An Embedded Support Vector Machine

R. Pedersen, Martin Schoeberl
{"title":"An Embedded Support Vector Machine","authors":"R. Pedersen, Martin Schoeberl","doi":"10.1109/WISES.2006.329117","DOIUrl":null,"url":null,"abstract":"In this paper we work on the balance between hardware and software implementation of a machine learning algorithm, which belongs to the area of statistical learning theory. We use system-on-chip technology to demonstrate the potential usefulness of moving the critical sections of an algorithm into HW: the so-called hardware/software balance. Our experiments show that the approach can achieve speedups using a complex machine learning algorithm called a support vector machine. The experiments are conducted on a real-time Java virtual machine named Java optimized processor","PeriodicalId":344061,"journal":{"name":"2006 International Workshop on Intelligent Solutions in Embedded Systems","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 International Workshop on Intelligent Solutions in Embedded Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WISES.2006.329117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

In this paper we work on the balance between hardware and software implementation of a machine learning algorithm, which belongs to the area of statistical learning theory. We use system-on-chip technology to demonstrate the potential usefulness of moving the critical sections of an algorithm into HW: the so-called hardware/software balance. Our experiments show that the approach can achieve speedups using a complex machine learning algorithm called a support vector machine. The experiments are conducted on a real-time Java virtual machine named Java optimized processor
嵌入式支持向量机
在本文中,我们研究了机器学习算法的硬件和软件实现之间的平衡,这属于统计学习理论的领域。我们使用片上系统技术来展示将算法的关键部分移动到硬件中的潜在有用性:所谓的硬件/软件平衡。我们的实验表明,该方法可以使用一种称为支持向量机的复杂机器学习算法来实现加速。实验在实时Java虚拟机上进行,该虚拟机名为Java优化处理器
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信