Foreground segmentation based on thermo-visible fusion

Tarek Mouats, N. Aouf
{"title":"Foreground segmentation based on thermo-visible fusion","authors":"Tarek Mouats, N. Aouf","doi":"10.1109/ELMAR.2014.6923326","DOIUrl":null,"url":null,"abstract":"In this paper, we present a background subtraction (BS) technique based on the fusion of thermal and visible imagery using an adaptive Gaussian mixture models (GMM). We investigate how to effectively combine thermal and visible information to optimize the segmentation accuracy. Pixel-level fusion strategies combining different color spaces and image representations are addressed. The standard GMM implementation is extended to integrate additional information consisting in the thermal imagery. Tests were carried out on challenging real-world video sequences. Quantitative as well as qualitative results are shown demonstrating the improvements introduced with respect to the use of a single spectral band sensor.","PeriodicalId":424325,"journal":{"name":"Proceedings ELMAR-2014","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings ELMAR-2014","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ELMAR.2014.6923326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present a background subtraction (BS) technique based on the fusion of thermal and visible imagery using an adaptive Gaussian mixture models (GMM). We investigate how to effectively combine thermal and visible information to optimize the segmentation accuracy. Pixel-level fusion strategies combining different color spaces and image representations are addressed. The standard GMM implementation is extended to integrate additional information consisting in the thermal imagery. Tests were carried out on challenging real-world video sequences. Quantitative as well as qualitative results are shown demonstrating the improvements introduced with respect to the use of a single spectral band sensor.
基于热可见光融合的前景分割
本文提出了一种基于自适应高斯混合模型(GMM)的热图像和可见光图像融合的背景减法(BS)技术。我们研究了如何有效地结合热信息和可见信息来优化分割精度。讨论了结合不同色彩空间和图像表示的像素级融合策略。标准的GMM实现被扩展到集成热图像中的附加信息。在具有挑战性的真实视频序列中进行了测试。定量和定性的结果都显示了与使用单光谱波段传感器相比所引入的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信