The implicit discretization of the super-twisting sliding-mode control algorithm

B. Brogliato, A. Polyakov, D. Efimov
{"title":"The implicit discretization of the super-twisting sliding-mode control algorithm","authors":"B. Brogliato, A. Polyakov, D. Efimov","doi":"10.1109/VSS.2018.8460395","DOIUrl":null,"url":null,"abstract":"This paper deals with the analysis of the time-discretization of the super-twisting algorithm, with an implicit Euler method. It is shown that the discretized system is well-posed (in the sense that the control input is uniquely computable from known data and measured variable). The existence of a Lyapunov function with convex level sets is proved for the continuous-time closed-loop system. Then the global asymptotic Lyapunov stability of the unperturbed discrete-time closed-loop system is proved. The convergence to the origin in a finite number of steps is proved also in the unperturbed case. Numerical simulations demonstrate the superiority of the implicit method with respect to an explicit discretization with significant chattering reduction.","PeriodicalId":127777,"journal":{"name":"2018 15th International Workshop on Variable Structure Systems (VSS)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 15th International Workshop on Variable Structure Systems (VSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VSS.2018.8460395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

Abstract

This paper deals with the analysis of the time-discretization of the super-twisting algorithm, with an implicit Euler method. It is shown that the discretized system is well-posed (in the sense that the control input is uniquely computable from known data and measured variable). The existence of a Lyapunov function with convex level sets is proved for the continuous-time closed-loop system. Then the global asymptotic Lyapunov stability of the unperturbed discrete-time closed-loop system is proved. The convergence to the origin in a finite number of steps is proved also in the unperturbed case. Numerical simulations demonstrate the superiority of the implicit method with respect to an explicit discretization with significant chattering reduction.
超扭转滑模控制算法的隐式离散化
本文用隐式欧拉法分析了超扭转算法的时间离散性。结果表明,离散化后的系统是适定的(即控制输入是唯一可由已知数据和测量变量计算的)。证明了连续时间闭环系统具有凸水平集的李雅普诺夫函数的存在性。然后证明了非摄动离散闭环系统的全局渐近Lyapunov稳定性。在无摄动情况下,证明了算法在有限步内收敛到原点。数值模拟证明了隐式离散方法相对于显式离散方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信