A Novel Layer Shaping Method to Reduce Far-End Crosstalk Noise in Microstrip Lines using 3D Printer

Jaehyuk Lim, Seungjin Lee, Jaehoon Lee
{"title":"A Novel Layer Shaping Method to Reduce Far-End Crosstalk Noise in Microstrip Lines using 3D Printer","authors":"Jaehyuk Lim, Seungjin Lee, Jaehoon Lee","doi":"10.1109/AMS48904.2020.9059422","DOIUrl":null,"url":null,"abstract":"In this paper, a novel layer shaping method to reduce far-end crosstalk (FEXT) noise in multiple microstrip lines was proposed. To reduce FEXT noise induced in adjacent microstrip lines, mushroom-shaped dielectric structure (MSDS) was created between the microstrip lines. The prototypes were fabricated using 3D printer to avoid increased complexity, and the effect of the proposed MSDS was verifiedfrom simulated and measured results.","PeriodicalId":257699,"journal":{"name":"2020 4th Australian Microwave Symposium (AMS)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 4th Australian Microwave Symposium (AMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AMS48904.2020.9059422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, a novel layer shaping method to reduce far-end crosstalk (FEXT) noise in multiple microstrip lines was proposed. To reduce FEXT noise induced in adjacent microstrip lines, mushroom-shaped dielectric structure (MSDS) was created between the microstrip lines. The prototypes were fabricated using 3D printer to avoid increased complexity, and the effect of the proposed MSDS was verifiedfrom simulated and measured results.
一种利用3D打印机降低微带线远端串扰噪声的层整形新方法
提出了一种降低多微带线远端串扰噪声的层整形方法。为了降低相邻微带线产生的文本噪声,在微带线之间建立了蘑菇状的介电结构。为了避免增加复杂性,使用3D打印机制作原型,并通过模拟和测量结果验证了所提出的MSDS的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信