{"title":"Assessing the Effects of Orientation and Device on (Constrained) 3D Movement Techniques","authors":"Robert J. Teather, W. Stuerzlinger","doi":"10.1109/3DUI.2008.4476590","DOIUrl":null,"url":null,"abstract":"We present two studies to assess which physical factors influence 3D object movement tasks with various input devices. Since past research has shown that a mouse with suitable mapping techniques can serve as a good input device for some 3D object movement tasks, we also evaluate which characteristics of the mouse sustain its success. Our first study evaluates the effect of a supporting surface across orientation of input device movement and display orientation. A 3D tracking device was used in all conditions for consistency. The results of this study are inconclusive; no significant differences were found between the factors examined. The results of a second study show that the mouse outperforms the tracker for speed in all instances. The presence of support also improved accuracy when tracker movement is limited to 2D operation. A 3DOF movement mode performed worst overall.","PeriodicalId":131574,"journal":{"name":"2008 IEEE Symposium on 3D User Interfaces","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Symposium on 3D User Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DUI.2008.4476590","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43
Abstract
We present two studies to assess which physical factors influence 3D object movement tasks with various input devices. Since past research has shown that a mouse with suitable mapping techniques can serve as a good input device for some 3D object movement tasks, we also evaluate which characteristics of the mouse sustain its success. Our first study evaluates the effect of a supporting surface across orientation of input device movement and display orientation. A 3D tracking device was used in all conditions for consistency. The results of this study are inconclusive; no significant differences were found between the factors examined. The results of a second study show that the mouse outperforms the tracker for speed in all instances. The presence of support also improved accuracy when tracker movement is limited to 2D operation. A 3DOF movement mode performed worst overall.