HYPERAKTIV

S. Hicks, A. Stautland, Ole Bernt Fasmer, Wenche Førland, H. Hammer, P. Halvorsen, K. Mjeldheim, K. Oedegaard, B. Osnes, Vigdis Elin Giæver Syrstad, M. Riegler, P. Jakobsen
{"title":"HYPERAKTIV","authors":"S. Hicks, A. Stautland, Ole Bernt Fasmer, Wenche Førland, H. Hammer, P. Halvorsen, K. Mjeldheim, K. Oedegaard, B. Osnes, Vigdis Elin Giæver Syrstad, M. Riegler, P. Jakobsen","doi":"10.1145/3458305.3478454","DOIUrl":null,"url":null,"abstract":"Machine learning research within healthcare frequently lacks the public data needed to be fully reproducible and comparable. Datasets are often restricted due to privacy concerns and legal requirements that come with patient-related data. Consequentially, many algorithms and models get published on the same topic without a standard benchmark to measure against. Therefore, this paper presents HYPERAKTIV, a public dataset containing health, activity, and heart rate data from patients diagnosed with attention deficit hyperactivity disorder, better known as ADHD. The dataset consists of data collected from 51 patients with ADHD and 52 clinical controls. In addition to the activity and heart rate data, we also include a series of patient attributes such as their age, sex, and information about their mental state, as well as output data from a computerized neuropsychological test. Together with the presented dataset, we also provide baseline experiments using traditional machine learning algorithms to predict ADHD based on the included activity data. We hope that this dataset can be used as a starting point for computer scientists who want to contribute to the field of mental health, and as a common benchmark for future work in ADHD analysis.","PeriodicalId":138399,"journal":{"name":"Proceedings of the 12th ACM Multimedia Systems Conference","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th ACM Multimedia Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3458305.3478454","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Machine learning research within healthcare frequently lacks the public data needed to be fully reproducible and comparable. Datasets are often restricted due to privacy concerns and legal requirements that come with patient-related data. Consequentially, many algorithms and models get published on the same topic without a standard benchmark to measure against. Therefore, this paper presents HYPERAKTIV, a public dataset containing health, activity, and heart rate data from patients diagnosed with attention deficit hyperactivity disorder, better known as ADHD. The dataset consists of data collected from 51 patients with ADHD and 52 clinical controls. In addition to the activity and heart rate data, we also include a series of patient attributes such as their age, sex, and information about their mental state, as well as output data from a computerized neuropsychological test. Together with the presented dataset, we also provide baseline experiments using traditional machine learning algorithms to predict ADHD based on the included activity data. We hope that this dataset can be used as a starting point for computer scientists who want to contribute to the field of mental health, and as a common benchmark for future work in ADHD analysis.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信