{"title":"Semi-Supervised Learning with Bidirectional Adaptive Pairwise Encoding","authors":"Jiangbo Yuan, Jie Yu","doi":"10.1109/ICMLA.2016.0119","DOIUrl":null,"url":null,"abstract":"In contrast to classic supervised learning methods that demand pre-defined class labels, pairwise encoding or side-information encoding merely requires pairwise similarity information to drive feature learning, which makes it very appealing for many fundamental tasks such as dimensionality reduction and semi-supervised learning. In this paper, we present a novel bimarginal pairwise encoding model, along with deep autoencoder, to learn nonlinear embedding for the aforementioned tasks. The new method learns powerful features that preserve critical pairwise information in a semi-supervised manner. It has achieved better performance on the well-known yet hard to make improvement benchmark MINIST compared with other methods in the same category, i.e. Autoencoder [4], Invariant Mapping for Dimensionality Reduction [1], Neighborhood Component Analysis [3], and Fixed Bi-Margin Pairwise Encoding [11].","PeriodicalId":356182,"journal":{"name":"2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2016.0119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
In contrast to classic supervised learning methods that demand pre-defined class labels, pairwise encoding or side-information encoding merely requires pairwise similarity information to drive feature learning, which makes it very appealing for many fundamental tasks such as dimensionality reduction and semi-supervised learning. In this paper, we present a novel bimarginal pairwise encoding model, along with deep autoencoder, to learn nonlinear embedding for the aforementioned tasks. The new method learns powerful features that preserve critical pairwise information in a semi-supervised manner. It has achieved better performance on the well-known yet hard to make improvement benchmark MINIST compared with other methods in the same category, i.e. Autoencoder [4], Invariant Mapping for Dimensionality Reduction [1], Neighborhood Component Analysis [3], and Fixed Bi-Margin Pairwise Encoding [11].