Missile Interception Guidance With Parameter Uncertainties Using Desensitized Extended Kalman Filter

Jingsong Yang, Wei Hu, Tianhao Liu, Lingguo Cui, Jia Liang
{"title":"Missile Interception Guidance With Parameter Uncertainties Using Desensitized Extended Kalman Filter","authors":"Jingsong Yang, Wei Hu, Tianhao Liu, Lingguo Cui, Jia Liang","doi":"10.1109/ICSAI57119.2022.10005408","DOIUrl":null,"url":null,"abstract":"The missile interception problem is considered in this article. As in practical applications, the real states are not available due to the existence of measurement noises and model parameter uncertainties, desensitized extended Kalman filter (DEKF) is applied to generate reliable state estimations. Compared to standard extend Kalman filter (EKF), this approach calculates state estimations by optimizing a cost function with one additional term, which reflects the state estimate error sensitivities. Such a design makes the filter less sensitive to model parameter uncertainties and can be considered as a generalization of the standard EKF. Simulation studies are conducted to evaluate the performance of DEKF when applying to integrated missile-target interception model.","PeriodicalId":339547,"journal":{"name":"2022 8th International Conference on Systems and Informatics (ICSAI)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 8th International Conference on Systems and Informatics (ICSAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSAI57119.2022.10005408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The missile interception problem is considered in this article. As in practical applications, the real states are not available due to the existence of measurement noises and model parameter uncertainties, desensitized extended Kalman filter (DEKF) is applied to generate reliable state estimations. Compared to standard extend Kalman filter (EKF), this approach calculates state estimations by optimizing a cost function with one additional term, which reflects the state estimate error sensitivities. Such a design makes the filter less sensitive to model parameter uncertainties and can be considered as a generalization of the standard EKF. Simulation studies are conducted to evaluate the performance of DEKF when applying to integrated missile-target interception model.
基于脱敏扩展卡尔曼滤波的参数不确定导弹拦截制导
本文考虑了导弹拦截问题。在实际应用中,由于存在测量噪声和模型参数的不确定性,无法获得真实状态,采用脱敏扩展卡尔曼滤波(DEKF)产生可靠的状态估计。与标准扩展卡尔曼滤波(EKF)相比,该方法通过优化一个附加项的代价函数来计算状态估计,该代价函数反映了状态估计的误差灵敏度。这样的设计使滤波器对模型参数不确定性的敏感性降低,可以认为是标准EKF的推广。通过仿真研究,评估了DEKF在弹靶综合拦截模型中的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信