Safety Helmet Wearing Detection Based on Image Processing and Deep Learning

Wei Zhang, Chifu Yang, Feng Jiang, Xianzhong Gao, Xiao Zhang
{"title":"Safety Helmet Wearing Detection Based on Image Processing and Deep Learning","authors":"Wei Zhang, Chifu Yang, Feng Jiang, Xianzhong Gao, Xiao Zhang","doi":"10.1109/CISCE50729.2020.00076","DOIUrl":null,"url":null,"abstract":"The environment of the steel factory workshop is complex, and there may be a variety of unexpected potential dangers, so wearing a helmet to enter the workshop is a prerequisite for the factory. In order to supervise this situation, it is necessary for employees to wear helmets for testing, which is a key part of the overall intelligent monitoring system for steel plant personnel. In this paper, through the crawler to collect high-definition employees wearing helmets and no helmet pictures, using manual labeling, proposed a helmet detection framework based on computer vision deep learning detection framework Faster-RCNN. The actual testing results produce convincing experimental results, which proves the effectiveness and practicability of the proposed framework.","PeriodicalId":101777,"journal":{"name":"2020 International Conference on Communications, Information System and Computer Engineering (CISCE)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Communications, Information System and Computer Engineering (CISCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISCE50729.2020.00076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The environment of the steel factory workshop is complex, and there may be a variety of unexpected potential dangers, so wearing a helmet to enter the workshop is a prerequisite for the factory. In order to supervise this situation, it is necessary for employees to wear helmets for testing, which is a key part of the overall intelligent monitoring system for steel plant personnel. In this paper, through the crawler to collect high-definition employees wearing helmets and no helmet pictures, using manual labeling, proposed a helmet detection framework based on computer vision deep learning detection framework Faster-RCNN. The actual testing results produce convincing experimental results, which proves the effectiveness and practicability of the proposed framework.
基于图像处理和深度学习的安全帽佩戴检测
钢厂车间的环境复杂,可能存在各种意想不到的潜在危险,因此戴上安全帽进入车间是进厂的先决条件。为了对这种情况进行监督,员工有必要戴上头盔进行检测,这是钢厂人员整体智能监控系统的关键部分。本文通过爬虫采集高清员工戴头盔和不戴头盔的图片,采用人工标注,提出了一种基于计算机视觉深度学习的头盔检测框架Faster-RCNN。实际测试结果得出了令人信服的实验结果,证明了所提框架的有效性和实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信