Set-Based Boosting for Instance-Level Transfer

Eric Eaton, Marie desJardins
{"title":"Set-Based Boosting for Instance-Level Transfer","authors":"Eric Eaton, Marie desJardins","doi":"10.1109/ICDMW.2009.97","DOIUrl":null,"url":null,"abstract":"The success of transfer to improve learning on a target task is highly dependent on the selected source data. Instance-based transfer methods reuse data from the source tasks to augment the training data for the target task. If poorly chosen, this source data may inhibit learning, resulting in negative transfer. The current best performing algorithm for instance-based transfer, TrAdaBoost, performs poorly when given irrelevant source data. We present a novel set-based boosting technique for instance-based transfer. The proposed algorithm, TransferBoost, boosts both individual instances and collective sets of instances from each source task. In effect, TransferBoost boosts each source task, assigning higher weight to those source tasks which show positive transferability to the target task, and then adjusts the weights of the instances within each source task via AdaBoost. The results demonstrate that TransferBoost significantly improves transfer performance over existing instance-based algorithms when given a mix of relevant and irrelevant source data.","PeriodicalId":351078,"journal":{"name":"2009 IEEE International Conference on Data Mining Workshops","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Data Mining Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2009.97","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

Abstract

The success of transfer to improve learning on a target task is highly dependent on the selected source data. Instance-based transfer methods reuse data from the source tasks to augment the training data for the target task. If poorly chosen, this source data may inhibit learning, resulting in negative transfer. The current best performing algorithm for instance-based transfer, TrAdaBoost, performs poorly when given irrelevant source data. We present a novel set-based boosting technique for instance-based transfer. The proposed algorithm, TransferBoost, boosts both individual instances and collective sets of instances from each source task. In effect, TransferBoost boosts each source task, assigning higher weight to those source tasks which show positive transferability to the target task, and then adjusts the weights of the instances within each source task via AdaBoost. The results demonstrate that TransferBoost significantly improves transfer performance over existing instance-based algorithms when given a mix of relevant and irrelevant source data.
基于集的实例级传输增强
通过迁移来提高目标任务学习的成功程度高度依赖于所选择的源数据。基于实例的传输方法重用来自源任务的数据来增强目标任务的训练数据。如果选择不当,源数据可能会抑制学习,导致负迁移。目前性能最好的基于实例的传输算法TrAdaBoost在给定不相关的源数据时表现不佳。提出了一种新的基于集合的基于实例传输增强技术。所提出的算法TransferBoost既提升单个实例,也提升来自每个源任务的实例集合。实际上,TransferBoost会提升每个源任务,为那些显示正向可转移性的源任务分配更高的权重,然后通过AdaBoost调整每个源任务内实例的权重。结果表明,当给定相关和不相关源数据的混合时,TransferBoost显著提高了现有基于实例的算法的传输性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信