Complexity optimized vector quantization: a neural network approach

J. Buhmann, H. Kühnel
{"title":"Complexity optimized vector quantization: a neural network approach","authors":"J. Buhmann, H. Kühnel","doi":"10.1109/DCC.1992.227480","DOIUrl":null,"url":null,"abstract":"The authors discuss a vector quantization strategy which jointly optimizes distortion errors and complexity costs. A maximum entropy estimation of the vector quantization cost function yields an optimal codebook size, the reference vectors and the assignment frequencies. They compare different complexity measures for the design of image compression algorithms which quantize wavelet decomposed images. An online version of complexity optimized vector quantization is implemented by an artificial neural network with winner-take-all connectivity. Their approach establishes a unifying framework for different quantization methods like K-means clustering and its fuzzy version, entropy constrained vector quantization or self-organizing topological maps and competitive neural networks.<<ETX>>","PeriodicalId":170269,"journal":{"name":"Data Compression Conference, 1992.","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Compression Conference, 1992.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.1992.227480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

The authors discuss a vector quantization strategy which jointly optimizes distortion errors and complexity costs. A maximum entropy estimation of the vector quantization cost function yields an optimal codebook size, the reference vectors and the assignment frequencies. They compare different complexity measures for the design of image compression algorithms which quantize wavelet decomposed images. An online version of complexity optimized vector quantization is implemented by an artificial neural network with winner-take-all connectivity. Their approach establishes a unifying framework for different quantization methods like K-means clustering and its fuzzy version, entropy constrained vector quantization or self-organizing topological maps and competitive neural networks.<>
复杂度优化向量量化:一种神经网络方法
作者讨论了一种共同优化失真误差和复杂性代价的矢量量化策略。向量量化代价函数的最大熵估计产生最优码本大小、参考向量和分配频率。他们比较了量化小波分解图像的图像压缩算法设计的不同复杂度度量。采用赢家通吃的人工神经网络实现了复杂度优化矢量量化的在线版本。他们的方法为不同的量化方法建立了一个统一的框架,如k均值聚类及其模糊版本、熵约束向量量化或自组织拓扑映射和竞争神经网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信