Hierarchical spacetime control

Zicheng Liu, S. Gortler, Michael F. Cohen
{"title":"Hierarchical spacetime control","authors":"Zicheng Liu, S. Gortler, Michael F. Cohen","doi":"10.1145/192161.192169","DOIUrl":null,"url":null,"abstract":"Specifying the motion of an animated linked figure such that it achieves given tasks (e.g., throwing a ball into a basket) and performs the tasks in a realistic fashion (e.g., gracefully, and following physical laws such as gravity) has been an elusive goal for computer animators. The spacetime constraints paradigm has been shown to be a valuable approach to this problem, but it suffers from computational complexity growth as creatures and tasks approach those one would like to animate. The complexity is shown to be, in part, due to the choice of finite basis with which to represent the trajectories of the generalized degrees of freedom. This paper describes new features to the spacetime constraints paradigm to address this problem. The functions through time of the generalized degrees of freedom are reformulated in a hierarchical wavelet representation. This provides a means to automatically add detailed motion only where it is required, thus minimizing the number of discrete variables. In addition the wavelet basis is shown to lead to better conditioned systems of equations and thus faster convergence.","PeriodicalId":151245,"journal":{"name":"Proceedings of the 21st annual conference on Computer graphics and interactive techniques","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"224","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st annual conference on Computer graphics and interactive techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/192161.192169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 224

Abstract

Specifying the motion of an animated linked figure such that it achieves given tasks (e.g., throwing a ball into a basket) and performs the tasks in a realistic fashion (e.g., gracefully, and following physical laws such as gravity) has been an elusive goal for computer animators. The spacetime constraints paradigm has been shown to be a valuable approach to this problem, but it suffers from computational complexity growth as creatures and tasks approach those one would like to animate. The complexity is shown to be, in part, due to the choice of finite basis with which to represent the trajectories of the generalized degrees of freedom. This paper describes new features to the spacetime constraints paradigm to address this problem. The functions through time of the generalized degrees of freedom are reformulated in a hierarchical wavelet representation. This provides a means to automatically add detailed motion only where it is required, thus minimizing the number of discrete variables. In addition the wavelet basis is shown to lead to better conditioned systems of equations and thus faster convergence.
分层时空控制
指定动画链接图形的运动,使其完成给定的任务(例如,将球扔进篮子)并以逼真的方式执行任务(例如,优雅地遵循物理定律,如重力)一直是计算机动画师难以捉摸的目标。时空约束范式已被证明是解决这一问题的一种有价值的方法,但随着生物和任务接近那些想要动画的对象,它的计算复杂性不断增长。其复杂性部分是由于选择有限基来表示广义自由度的轨迹。本文描述了时空约束范式的新特征来解决这个问题。将广义自由度随时间的函数用分层小波表示重新表述。这提供了一种方法,可以在需要的地方自动添加详细的运动,从而最大限度地减少离散变量的数量。此外,小波基被证明可以产生更好的条件方程组,从而更快地收敛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信