Facilitating evolutionary innovation by developmental modularity and variability

R. Doursat
{"title":"Facilitating evolutionary innovation by developmental modularity and variability","authors":"R. Doursat","doi":"10.1145/1569901.1569996","DOIUrl":null,"url":null,"abstract":"Natural complex adaptive systems show many examples of self-organization and decentralization, such as pattern formation or swarm intelligence. Yet, only multicellular organisms possess the genuine architectural capabilities needed in many engineering application domains, from nanotechnologies to reconfigurable and swarm robotics. Biological development thus offers an important paradigm for a new breed of \"evo-devo\" computational systems. This work explores the evolutionary potential of an original multi-agent model of artificial embryogeny through differently parametrized simulations. It represents a rare attempt to integrate both self-organization and regulated architectures. Its aim is to illustrate how a developmental system, based on a truly indirect mapping from a modular genotype to a modular phenotype, can facilitate the generation of variations, thus structural innovation.","PeriodicalId":193093,"journal":{"name":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1569901.1569996","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

Abstract

Natural complex adaptive systems show many examples of self-organization and decentralization, such as pattern formation or swarm intelligence. Yet, only multicellular organisms possess the genuine architectural capabilities needed in many engineering application domains, from nanotechnologies to reconfigurable and swarm robotics. Biological development thus offers an important paradigm for a new breed of "evo-devo" computational systems. This work explores the evolutionary potential of an original multi-agent model of artificial embryogeny through differently parametrized simulations. It represents a rare attempt to integrate both self-organization and regulated architectures. Its aim is to illustrate how a developmental system, based on a truly indirect mapping from a modular genotype to a modular phenotype, can facilitate the generation of variations, thus structural innovation.
通过发展模块化和可变性促进进化创新
自然复杂适应系统显示了许多自组织和去中心化的例子,如模式形成或群体智能。然而,只有多细胞生物才具备许多工程应用领域所需的真正的建筑能力,从纳米技术到可重构和群体机器人。因此,生物学的发展为新型的“进化-发展”计算系统提供了一个重要的范例。本研究通过不同的参数化模拟,探讨了一个原始的多智能体人工胚胎发生模型的进化潜力。它代表了整合自组织和规范架构的罕见尝试。它的目的是说明一个基于从模块化基因型到模块化表型的真正间接映射的发育系统如何促进变异的产生,从而促进结构创新。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信