A Discriminative and Compact Audio Representation for Event Detection

L. Jing, Bo Liu, Jaeyoung Choi, Adam L. Janin, Julia Bernd, Michael W. Mahoney, G. Friedland
{"title":"A Discriminative and Compact Audio Representation for Event Detection","authors":"L. Jing, Bo Liu, Jaeyoung Choi, Adam L. Janin, Julia Bernd, Michael W. Mahoney, G. Friedland","doi":"10.1145/2964284.2970377","DOIUrl":null,"url":null,"abstract":"This paper presents a novel two-phase method for audio representation: Discriminative and Compact Audio Representation (DCAR). In the first phase, each audio track is modeled using a Gaussian mixture model (GMM) that includes several components to capture the variability within that track. The second phase takes into account both global structure and local structure. In this phase, the components are rendered more discriminative and compact by formulating an optimization problem on Grassmannian manifolds, which we found represents the structure of audio effectively. Experimental results on the YLI-MED dataset show that the proposed DCAR representation consistently outperforms state-of-the-art audio representations: i-vector, mv-vector, and GMM.","PeriodicalId":140670,"journal":{"name":"Proceedings of the 24th ACM international conference on Multimedia","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 24th ACM international conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2964284.2970377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper presents a novel two-phase method for audio representation: Discriminative and Compact Audio Representation (DCAR). In the first phase, each audio track is modeled using a Gaussian mixture model (GMM) that includes several components to capture the variability within that track. The second phase takes into account both global structure and local structure. In this phase, the components are rendered more discriminative and compact by formulating an optimization problem on Grassmannian manifolds, which we found represents the structure of audio effectively. Experimental results on the YLI-MED dataset show that the proposed DCAR representation consistently outperforms state-of-the-art audio representations: i-vector, mv-vector, and GMM.
一种用于事件检测的判别压缩音频表示
提出了一种新的两阶段音频表示方法:判别和压缩音频表示(DCAR)。在第一阶段,使用高斯混合模型(GMM)对每个音轨建模,该模型包括几个组件,以捕获该音轨中的可变性。第二阶段考虑全局结构和局部结构。在这一阶段,通过在格拉斯曼流形上制定优化问题,使组件更具判别性和紧凑性,我们发现格拉斯曼流形有效地代表了音频的结构。在YLI-MED数据集上的实验结果表明,提出的DCAR表示始终优于最先进的音频表示:i-vector, mv-vector和GMM。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信