Parameter estimation of the hyper-geometric distribution model for real test/debug data

Y. Tohma, Hisashi Yamano, Morio Ohba, R. Jacoby
{"title":"Parameter estimation of the hyper-geometric distribution model for real test/debug data","authors":"Y. Tohma, Hisashi Yamano, Morio Ohba, R. Jacoby","doi":"10.1109/ISSRE.1991.145350","DOIUrl":null,"url":null,"abstract":"The hyper-geometric distribution model (HGDM) has been proposed for estimating the number of faults initially resident in a program at the beginning of the test/debug process. However, the parameters of the hyper-geometric distribution necessary for making the estimation were previously determined by the 3-dimensional exhaustive search and therefore, much time was needed to get the numerical result. The authors demonstrate, using real test/debug data of programs, that the least square sum method can be well applied to the estimation of such parameters of the hyper-geometric distribution model. Thus, the time needed for calculating the estimates can be reduced greatly.<<ETX>>","PeriodicalId":338844,"journal":{"name":"Proceedings. 1991 International Symposium on Software Reliability Engineering","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 1991 International Symposium on Software Reliability Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSRE.1991.145350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

The hyper-geometric distribution model (HGDM) has been proposed for estimating the number of faults initially resident in a program at the beginning of the test/debug process. However, the parameters of the hyper-geometric distribution necessary for making the estimation were previously determined by the 3-dimensional exhaustive search and therefore, much time was needed to get the numerical result. The authors demonstrate, using real test/debug data of programs, that the least square sum method can be well applied to the estimation of such parameters of the hyper-geometric distribution model. Thus, the time needed for calculating the estimates can be reduced greatly.<>
真实测试/调试数据超几何分布模型的参数估计
提出了超几何分布模型(HGDM),用于在测试/调试过程开始时估计程序中最初存在的故障数量。然而,进行估计所需的超几何分布参数之前是通过三维穷极搜索确定的,因此需要大量的时间来获得数值结果。作者通过实际的程序测试/调试数据证明,最小二乘法可以很好地应用于超几何分布模型的这类参数的估计。因此,计算估计所需的时间可以大大减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信