Exploring machine learning-based traffic prediction in 5G networks using a QualNet simulator and STLSTM

R. Rathna, D. Vinod
{"title":"Exploring machine learning-based traffic prediction in 5G networks using a QualNet simulator and STLSTM","authors":"R. Rathna, D. Vinod","doi":"10.26634/jmt.9.2.19317","DOIUrl":null,"url":null,"abstract":"This paper aims to explore Machine Learning-based traffic prediction in 5G networks using the QualNet simulator and the Spatio-Temporal Long Short-Term Memory (STLSTM) model. The study evaluated the performance of the STLSTM model by comparing it with other models such as Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), and Convolutional Neural Network (CNN). The evaluation metrics used for the simulation experiments included Packet Delivery Ratio (PDR), throughput, end-to-end delay, and jitter. The results showed that the STLSTM model outperformed the other models in terms of Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and R-squared, and achieved improved accuracy in predicting traffic in 5G networks. The findings of this study can help network operators to effectively manage traffic and optimize network performance.","PeriodicalId":443344,"journal":{"name":"i-manager's Journal on Mobile Applications and Technologies","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"i-manager's Journal on Mobile Applications and Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26634/jmt.9.2.19317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper aims to explore Machine Learning-based traffic prediction in 5G networks using the QualNet simulator and the Spatio-Temporal Long Short-Term Memory (STLSTM) model. The study evaluated the performance of the STLSTM model by comparing it with other models such as Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), and Convolutional Neural Network (CNN). The evaluation metrics used for the simulation experiments included Packet Delivery Ratio (PDR), throughput, end-to-end delay, and jitter. The results showed that the STLSTM model outperformed the other models in terms of Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and R-squared, and achieved improved accuracy in predicting traffic in 5G networks. The findings of this study can help network operators to effectively manage traffic and optimize network performance.
使用QualNet模拟器和STLSTM探索5G网络中基于机器学习的流量预测
本文旨在利用QualNet模拟器和时空长短期记忆(STLSTM)模型探索5G网络中基于机器学习的流量预测。本研究通过与长短期记忆(LSTM)、门控循环单元(GRU)和卷积神经网络(CNN)等其他模型进行比较,评估了STLSTM模型的性能。用于仿真实验的评估指标包括包投递率(PDR)、吞吐量、端到端延迟和抖动。结果表明,STLSTM模型在均方根误差(RMSE)、平均绝对误差(MAE)和r平方方面优于其他模型,在预测5G网络流量方面取得了更高的准确性。本研究结果可协助网路营运商有效管理流量及优化网路效能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信