Optimization method of error-related potentials to improve MI-BCI performance

Seul-Kee Kim, Da-hye Kim, Laehyun Kim
{"title":"Optimization method of error-related potentials to improve MI-BCI performance","authors":"Seul-Kee Kim, Da-hye Kim, Laehyun Kim","doi":"10.1109/IWW-BCI.2019.8737341","DOIUrl":null,"url":null,"abstract":"This paper proposes an optimization method of error-related potentials (ErrPs). The method is used to improve motor imagery (MI)-BCI performance by rapidly correcting MIBCI errors. We used the linear discriminant analysis and spatial-temporal domain analysis (STDA) algorithms to detect ErrP, which is the brain response measured immediately after MIBCI error. We found the optimal conditions for detecting ErrPs by comparing the performances of the algorithms in terms of the resampling rate, spatial domain, and temporal domain. The best sample size was obtained at a resampling rate of 21 Hz. In the spatial domain, using the data from 8 or 16 channels provided better performance compared to using a higher number of channels. For epoch selection in the temporal domain, the highest accuracy was obtained for the data at 1000 ms. Finally, the best performers among all subjects exhibited 86% accuracy in the optimal condition (21 Hz, 1000 ms, 16 ch), while the worst performers exhibited 58.67% accuracy in the first trial in the STDA algorithm.","PeriodicalId":345970,"journal":{"name":"2019 7th International Winter Conference on Brain-Computer Interface (BCI)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 7th International Winter Conference on Brain-Computer Interface (BCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWW-BCI.2019.8737341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper proposes an optimization method of error-related potentials (ErrPs). The method is used to improve motor imagery (MI)-BCI performance by rapidly correcting MIBCI errors. We used the linear discriminant analysis and spatial-temporal domain analysis (STDA) algorithms to detect ErrP, which is the brain response measured immediately after MIBCI error. We found the optimal conditions for detecting ErrPs by comparing the performances of the algorithms in terms of the resampling rate, spatial domain, and temporal domain. The best sample size was obtained at a resampling rate of 21 Hz. In the spatial domain, using the data from 8 or 16 channels provided better performance compared to using a higher number of channels. For epoch selection in the temporal domain, the highest accuracy was obtained for the data at 1000 ms. Finally, the best performers among all subjects exhibited 86% accuracy in the optimal condition (21 Hz, 1000 ms, 16 ch), while the worst performers exhibited 58.67% accuracy in the first trial in the STDA algorithm.
误差相关电位优化方法提高MI-BCI性能
提出了一种误差相关电位(ErrPs)的优化方法。该方法通过快速纠正运动想象(MI)-脑机接口的错误来提高运动想象(MI)-脑机接口的性能。我们使用线性判别分析和时空域分析(STDA)算法来检测ErrP,这是在MIBCI错误后立即测量的大脑反应。通过比较各算法在重采样率、空间域和时域方面的性能,我们找到了检测errp的最佳条件。在21 Hz的重采样率下获得了最佳样本量。在空间域中,使用来自8个或16个通道的数据比使用更多通道提供更好的性能。对于时域的历元选择,在1000 ms时获得的数据精度最高。最后,在最佳条件下(21 Hz, 1000 ms, 16 ch),表现最好的受试者的准确率为86%,而在STDA算法的第一次试验中,表现最差的受试者的准确率为58.67%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信