Forbidden-set distance labels for graphs of bounded doubling dimension

Ittai Abraham, S. Chechik, C. Gavoille, D. Peleg
{"title":"Forbidden-set distance labels for graphs of bounded doubling dimension","authors":"Ittai Abraham, S. Chechik, C. Gavoille, D. Peleg","doi":"10.1145/1835698.1835743","DOIUrl":null,"url":null,"abstract":"The paper proposes a forbidden-set labeling scheme for the family of graphs with doubling dimension bounded by α. For an n-vertex graph G in this family, and for any desired precision parameter ε > 0, the labeling scheme stores an O(1+α-1)2α log2 n-bit label at each vertex. Given the labels of two end-vertices s and t, and the labels of a set F of \"forbidden\" vertices and/or edges, our scheme can compute, in time polynomial in the length of the labels, a 1+ε stretch approximation for the distance between s and t in the graph GF. The labeling scheme can be extended into a forbidden-set labeled routing scheme with stretch 1 + ε for graphs of bounded doubling dimension.","PeriodicalId":447863,"journal":{"name":"Proceedings of the 29th ACM SIGACT-SIGOPS symposium on Principles of distributed computing","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 29th ACM SIGACT-SIGOPS symposium on Principles of distributed computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1835698.1835743","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The paper proposes a forbidden-set labeling scheme for the family of graphs with doubling dimension bounded by α. For an n-vertex graph G in this family, and for any desired precision parameter ε > 0, the labeling scheme stores an O(1+α-1)2α log2 n-bit label at each vertex. Given the labels of two end-vertices s and t, and the labels of a set F of "forbidden" vertices and/or edges, our scheme can compute, in time polynomial in the length of the labels, a 1+ε stretch approximation for the distance between s and t in the graph GF. The labeling scheme can be extended into a forbidden-set labeled routing scheme with stretch 1 + ε for graphs of bounded doubling dimension.
有界倍维图的禁止集距离标记
本文提出了以α为界的双维图族的一种禁止集标记方案。对于这个族中的n顶点图G,对于任何期望的精度参数ε > 0,标记方案在每个顶点存储一个O(1+α-1)2α log2 n位标记。给定两个端点s和t的标记,以及一个“禁止”顶点和/或边的集合F的标记,我们的方案可以在标记长度的时间多项式中计算图GF中s和t之间距离的1+ε拉伸近似。对于有界双维图,该标记方案可推广为一种具有1 + ε拉伸的禁止集标记路由方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信