A delayed error least mean squares adaptive filtering algorithm and its performance analysis

J. Thomas
{"title":"A delayed error least mean squares adaptive filtering algorithm and its performance analysis","authors":"J. Thomas","doi":"10.1109/DSPWS.1996.555542","DOIUrl":null,"url":null,"abstract":"High sampling rate realizations of the least mean squares (LMS) adaptive filtering algorithm require that the inherent recursive computational bottleneck in the impulse response updating be broken by introducing algorithmic delays into the error feedback path. The well known delayed LMS (DLMS) technique achieves this by convolving delayed error samples with delayed input samples. This paper proposes a possible realization that convolves delayed error samples with undelayed input samples, motivated by systolization and pipelining requirements that use only the delays introduced in the error feedback path. We provide a convergence analysis of this delayed error LMS (DELMS) algorithm along with experimental simulations that prove the stability of this adaptation technique under desired operating conditions and improved tracking performance in nonstationary environments, compared with the DLMS algorithm.","PeriodicalId":131323,"journal":{"name":"1996 IEEE Digital Signal Processing Workshop Proceedings","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1996 IEEE Digital Signal Processing Workshop Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSPWS.1996.555542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

High sampling rate realizations of the least mean squares (LMS) adaptive filtering algorithm require that the inherent recursive computational bottleneck in the impulse response updating be broken by introducing algorithmic delays into the error feedback path. The well known delayed LMS (DLMS) technique achieves this by convolving delayed error samples with delayed input samples. This paper proposes a possible realization that convolves delayed error samples with undelayed input samples, motivated by systolization and pipelining requirements that use only the delays introduced in the error feedback path. We provide a convergence analysis of this delayed error LMS (DELMS) algorithm along with experimental simulations that prove the stability of this adaptation technique under desired operating conditions and improved tracking performance in nonstationary environments, compared with the DLMS algorithm.
一种延迟误差最小均方自适应滤波算法及其性能分析
为了实现高采样率的最小均方自适应滤波算法,需要在误差反馈路径中引入算法延迟来打破脉冲响应更新固有的递归计算瓶颈。众所周知的延迟LMS (DLMS)技术通过将延迟误差样本与延迟输入样本进行卷积来实现这一点。本文提出了一种可能的实现,将延迟的错误样本与未延迟的输入样本进行卷积,这是由只使用误差反馈路径中引入的延迟的收缩和流水线要求驱动的。我们对这种延迟误差LMS (DELMS)算法进行了收敛分析,并进行了实验模拟,证明了与DLMS算法相比,这种自适应技术在期望的操作条件下具有稳定性,并且在非平稳环境中具有更好的跟踪性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信