No-Reference Stereoscopic Image Quality Assessment Considering Binocular Disparity and Fusion Compensation

Jinhui Feng, Sumei Li, Yongli Chang
{"title":"No-Reference Stereoscopic Image Quality Assessment Considering Binocular Disparity and Fusion Compensation","authors":"Jinhui Feng, Sumei Li, Yongli Chang","doi":"10.1109/VCIP53242.2021.9675398","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an optimized dual stream convolutional neural network (CNN) considering binocular disparity and fusion compensation for no-reference stereoscopic image quality assessment (SIQA). Different from previous methods, we extract both disparity and fusion features from multiple levels to simulate hierarchical processing of the stereoscopic images in human brain. Given that the ocular dominance plays an important role in quality evaluation, the fusion weights assignment module (FWAM) is proposed to assign weight to guide the fusion of the left and the right features respectively. Experimental results on four public stereoscopic image databases show that the proposed method is superior to the state-of-the-art SIQA methods on both symmetrical and asymmetrical distortion stereoscopic images.","PeriodicalId":114062,"journal":{"name":"2021 International Conference on Visual Communications and Image Processing (VCIP)","volume":"141 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP53242.2021.9675398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we propose an optimized dual stream convolutional neural network (CNN) considering binocular disparity and fusion compensation for no-reference stereoscopic image quality assessment (SIQA). Different from previous methods, we extract both disparity and fusion features from multiple levels to simulate hierarchical processing of the stereoscopic images in human brain. Given that the ocular dominance plays an important role in quality evaluation, the fusion weights assignment module (FWAM) is proposed to assign weight to guide the fusion of the left and the right features respectively. Experimental results on four public stereoscopic image databases show that the proposed method is superior to the state-of-the-art SIQA methods on both symmetrical and asymmetrical distortion stereoscopic images.
考虑双眼视差和融合补偿的无参考立体图像质量评价
本文提出了一种考虑双眼视差和融合补偿的优化双流卷积神经网络(CNN),用于无参考立体图像质量评估(SIQA)。与以往的方法不同,我们从多个层次提取视差和融合特征,模拟立体图像在人脑中的分层处理。考虑到眼优势在质量评价中的重要作用,提出了融合权重分配模块(FWAM),分别分配权重指导左右特征的融合。在四个公共立体图像数据库上的实验结果表明,该方法在对称和不对称畸变立体图像上都优于现有的SIQA方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信