An investigation into time-varying characteristics of multivariate time series in Grassmann classification

Bezawit Habtamu Nuriye, Beomseok Oh
{"title":"An investigation into time-varying characteristics of multivariate time series in Grassmann classification","authors":"Bezawit Habtamu Nuriye, Beomseok Oh","doi":"10.1109/ICEIC57457.2023.10049926","DOIUrl":null,"url":null,"abstract":"Since multivariate time series (MTS), which lie in a non-Euclidean space, exhibit temporal evolution and correlation characteristics, its classification is considered a non-trivial task. To mitigate the impact of the time-varying characteristics and thus enhance the classification accuracy, in this paper, we propose to model MTS data using a time-varying linear dynamical system followed by a neural network-based classification on the Grassmannian manifold. Our experiments on publicly available MTS datasets show promising classification results.","PeriodicalId":373752,"journal":{"name":"2023 International Conference on Electronics, Information, and Communication (ICEIC)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Electronics, Information, and Communication (ICEIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEIC57457.2023.10049926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Since multivariate time series (MTS), which lie in a non-Euclidean space, exhibit temporal evolution and correlation characteristics, its classification is considered a non-trivial task. To mitigate the impact of the time-varying characteristics and thus enhance the classification accuracy, in this paper, we propose to model MTS data using a time-varying linear dynamical system followed by a neural network-based classification on the Grassmannian manifold. Our experiments on publicly available MTS datasets show promising classification results.
多元时间序列在Grassmann分类中的时变特性研究
由于多元时间序列(MTS)处于非欧几里得空间中,具有时间演化和相关特征,因此其分类被认为是一项非平凡的任务。为了减轻时变特征的影响,从而提高分类精度,本文提出使用时变线性动力系统对MTS数据进行建模,然后在格拉斯曼流形上进行基于神经网络的分类。我们在公开可用的MTS数据集上的实验显示了有希望的分类结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信