{"title":"Pink’s conjecture on unlikely intersections and families of semi-abelian varieties","authors":"D. Bertrand, B. Edixhoven","doi":"10.5802/jep.126","DOIUrl":null,"url":null,"abstract":"The Poincare torsor of a Shimura family of abelian varieties can be viewed both as a family of semi-abelian varieties and as a mixed Shimura variety. We show that the special subvarieties of the latter cannot all be described in terms of the group subschemes of the former. This provides a counter-example to the relative Manin-Mumford conjecture, but also some evidence in favour of Pink's conjecture on unlikely intersections in mixed Shimura varieties. The main part of the article concerns mixed Hodge structures and the uniformization of the Poincare torsor, but other, more geometric, approaches are also discussed.","PeriodicalId":106406,"journal":{"name":"Journal de l’École polytechnique — Mathématiques","volume":"56 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de l’École polytechnique — Mathématiques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/jep.126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
The Poincare torsor of a Shimura family of abelian varieties can be viewed both as a family of semi-abelian varieties and as a mixed Shimura variety. We show that the special subvarieties of the latter cannot all be described in terms of the group subschemes of the former. This provides a counter-example to the relative Manin-Mumford conjecture, but also some evidence in favour of Pink's conjecture on unlikely intersections in mixed Shimura varieties. The main part of the article concerns mixed Hodge structures and the uniformization of the Poincare torsor, but other, more geometric, approaches are also discussed.