Distributed Kernel Regression: An Algorithm for Training Collaboratively

Joel B. Predd, S. Kulkarni, H. Poor
{"title":"Distributed Kernel Regression: An Algorithm for Training Collaboratively","authors":"Joel B. Predd, S. Kulkarni, H. Poor","doi":"10.1109/ITW.2006.1633840","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of distributed learning under communication constraints, motivated by distributed signal processing in wireless sensor networks and data mining with distributed databases. After formalizing a general model for distributed learning, an algorithm for collaboratively training regularized kernel least-squares regression estimators is derived. Noting that the algorithm can be viewed as an application of successive orthogonal projection algorithms, its convergence properties are investigated and the statistical behavior of the estimator is discussed in a simplified theoretical setting.","PeriodicalId":293144,"journal":{"name":"2006 IEEE Information Theory Workshop - ITW '06 Punta del Este","volume":"56 8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Information Theory Workshop - ITW '06 Punta del Este","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW.2006.1633840","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

Abstract

This paper addresses the problem of distributed learning under communication constraints, motivated by distributed signal processing in wireless sensor networks and data mining with distributed databases. After formalizing a general model for distributed learning, an algorithm for collaboratively training regularized kernel least-squares regression estimators is derived. Noting that the algorithm can be viewed as an application of successive orthogonal projection algorithms, its convergence properties are investigated and the statistical behavior of the estimator is discussed in a simplified theoretical setting.
分布式核回归:一种协同训练算法
基于无线传感器网络中的分布式信号处理和分布式数据库的数据挖掘,本文研究了通信约束下的分布式学习问题。在形式化了分布式学习的一般模型之后,导出了一种协同训练正则化核最小二乘回归估计器的算法。注意到该算法可以看作是连续正交投影算法的一种应用,研究了它的收敛性,并在简化的理论设置下讨论了估计量的统计行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信