Averaging Methods using Dynamic Time Warping for Time Series Classification

Shreyasi Datta, C. Karmakar, M. Palaniswami
{"title":"Averaging Methods using Dynamic Time Warping for Time Series Classification","authors":"Shreyasi Datta, C. Karmakar, M. Palaniswami","doi":"10.1109/SSCI47803.2020.9308409","DOIUrl":null,"url":null,"abstract":"Averaging is an important step in time series classi-fication or clustering, to create representative sequences for each category of data. A global averaging method for Dynamic Time Warping (DTW) based time series analysis is DTW Barycenter Averaging (DBA). In this paper, we propose a recursive tree based implementation of DBA, for faster computation of an average sequence, using the divide-and-conquer strategy. We also propose to automate the termination of DBA using a data-driven approach. The performance of the proposed methods is evaluated using accuracy, precision and recall as performance metrics, in a simple DTW-distance based classification method on ten standard time series datasets. Experimental results demonstrate that the proposed approaches are significantly faster than DBA, while achieving similar performance.","PeriodicalId":413489,"journal":{"name":"2020 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"03 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI47803.2020.9308409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Averaging is an important step in time series classi-fication or clustering, to create representative sequences for each category of data. A global averaging method for Dynamic Time Warping (DTW) based time series analysis is DTW Barycenter Averaging (DBA). In this paper, we propose a recursive tree based implementation of DBA, for faster computation of an average sequence, using the divide-and-conquer strategy. We also propose to automate the termination of DBA using a data-driven approach. The performance of the proposed methods is evaluated using accuracy, precision and recall as performance metrics, in a simple DTW-distance based classification method on ten standard time series datasets. Experimental results demonstrate that the proposed approaches are significantly faster than DBA, while achieving similar performance.
基于动态时间翘曲的时间序列分类平均方法
平均是时间序列分类或聚类的重要步骤,为每一类数据创建有代表性的序列。基于动态时间翘曲(DTW)的时间序列分析的全局平均方法是DTW重心平均(DBA)。在本文中,我们提出了一个基于递归树的DBA实现,为了更快地计算平均序列,使用分治策略。我们还建议使用数据驱动的方法自动终止DBA。在10个标准时间序列数据集上,采用基于DTW-distance的简单分类方法,以准确率、精密度和召回率作为性能指标来评估所提出方法的性能。实验结果表明,所提出的方法在性能相近的情况下,速度明显快于DBA。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信