Learning Commonsense Knowledge Through Interactive Dialogue

Benjamin Wu, A. Russo, Mark Law, Katsumi Inoue
{"title":"Learning Commonsense Knowledge Through Interactive Dialogue","authors":"Benjamin Wu, A. Russo, Mark Law, Katsumi Inoue","doi":"10.4230/OASIcs.ICLP.2018.12","DOIUrl":null,"url":null,"abstract":"One of the most difficult problems in Artificial Intelligence is related to acquiring commonsense knowledge -- to create a collection of facts and information that an ordinary person should know. In this work, we present a system that, from a limited background knowledge, is able to learn to form simple concepts through interactive dialogue with a user. We approach the problem using a syntactic parser, along with a mechanism to check for synonymy, to translate sentences into a logical formulas represented in Event Calculus using Answer Set Programming (ASP). Reasoning and learning tasks are then automatically generated for the translated text, with learning being initiated through question and answering. The system is capable of learning with no contextual knowledge prior to the dialogue. The system has been evaluated on stories inspired by the Facebook's bAbI's question-answering tasks, and through appropriate question and answering is able to respond accurately to these dialogues.","PeriodicalId":271041,"journal":{"name":"International Conference on Logic Programming","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Logic Programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/OASIcs.ICLP.2018.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

One of the most difficult problems in Artificial Intelligence is related to acquiring commonsense knowledge -- to create a collection of facts and information that an ordinary person should know. In this work, we present a system that, from a limited background knowledge, is able to learn to form simple concepts through interactive dialogue with a user. We approach the problem using a syntactic parser, along with a mechanism to check for synonymy, to translate sentences into a logical formulas represented in Event Calculus using Answer Set Programming (ASP). Reasoning and learning tasks are then automatically generated for the translated text, with learning being initiated through question and answering. The system is capable of learning with no contextual knowledge prior to the dialogue. The system has been evaluated on stories inspired by the Facebook's bAbI's question-answering tasks, and through appropriate question and answering is able to respond accurately to these dialogues.
通过互动对话学习常识
人工智能中最困难的问题之一与获取常识性知识有关,即创建一个普通人应该知道的事实和信息的集合。在这项工作中,我们提出了一个系统,该系统能够从有限的背景知识中,通过与用户的交互对话来学习形成简单的概念。我们使用语法解析器和检查同义词的机制来解决这个问题,并使用答案集编程(ASP)将句子翻译成事件演算中表示的逻辑公式。然后自动为翻译文本生成推理和学习任务,通过问答开始学习。该系统能够在没有上下文知识的情况下进行学习。该系统已经在受Facebook的bAbI问答任务启发的故事中进行了评估,并通过适当的问答能够准确地响应这些对话。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信