Optimal identification method of nonlinear system based on GA-GHNNs P

Lin Xiao-fei, Weng Mu-yun
{"title":"Optimal identification method of nonlinear system based on GA-GHNNs P","authors":"Lin Xiao-fei, Weng Mu-yun","doi":"10.1109/ICCSIT.2009.5234495","DOIUrl":null,"url":null,"abstract":"Gaussian-Hopfield neural network algorithm (GHNNs) is the most commonly used method of solving the identification problem of nonlinear systems, but learning rule (LMS rule) is easy to fall into local optimum. Genetic algorithm (GA) has globally optimal ability and can solve the locally optimal problem well. This paper puts forward GA-GHNNs algorithm and uses GA algorithm to solve the optimum parameters of GHNNs network. And finally, it carries out simulation experiments to prove the validity of the algorithm. Simulation results also show that this method has the ability to distinguish nonlinear systems.","PeriodicalId":342396,"journal":{"name":"2009 2nd IEEE International Conference on Computer Science and Information Technology","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 2nd IEEE International Conference on Computer Science and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSIT.2009.5234495","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Gaussian-Hopfield neural network algorithm (GHNNs) is the most commonly used method of solving the identification problem of nonlinear systems, but learning rule (LMS rule) is easy to fall into local optimum. Genetic algorithm (GA) has globally optimal ability and can solve the locally optimal problem well. This paper puts forward GA-GHNNs algorithm and uses GA algorithm to solve the optimum parameters of GHNNs network. And finally, it carries out simulation experiments to prove the validity of the algorithm. Simulation results also show that this method has the ability to distinguish nonlinear systems.
基于GA-GHNNs P的非线性系统最优辨识方法
高斯- hopfield神经网络算法(GHNNs)是解决非线性系统辨识问题最常用的方法,但学习规则(LMS规则)容易陷入局部最优。遗传算法具有全局最优的能力,能很好地解决局部最优问题。本文提出了GA-GHNNs算法,并用GA算法求解GHNNs网络的最优参数。最后进行了仿真实验,验证了算法的有效性。仿真结果表明,该方法具有较好的非线性系统识别能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信