A Practical Design Based on Deep Reinforcement Learning for RIS-Assisted mmWave MIMO Systems

Wangyang Xu, Jiancheng An, Lu Gan, H. Liao
{"title":"A Practical Design Based on Deep Reinforcement Learning for RIS-Assisted mmWave MIMO Systems","authors":"Wangyang Xu, Jiancheng An, Lu Gan, H. Liao","doi":"10.1109/ICCC56324.2022.10065758","DOIUrl":null,"url":null,"abstract":"A revolutionary technology, reconfigurable intelligent surface (RIS), has emerged to enhance the signal transmission quality of wireless communications. This paper a RIS-assisted mmWave multiple-input multiple-output system, where practical finite discrete phase-shift constraints are crucial. Then, we discuss the connection between the channel state information (CSI) and the devices' location information in the mmWave band. To provide a model-free and CSI-free solution, the advanced deep reinforcement learning (DRL) technique is proposed for the RIS-assisted system based on the devices' location information. Moreover, we also apply the deep quantization neural network (DQNN) in the proposed DRL algorithm for the practical finite discrete phase-shift constraint. Finally, simulation results demonstrate the viability and efficacy of our proposed approach.","PeriodicalId":263098,"journal":{"name":"2022 IEEE 8th International Conference on Computer and Communications (ICCC)","volume":"15 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 8th International Conference on Computer and Communications (ICCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCC56324.2022.10065758","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A revolutionary technology, reconfigurable intelligent surface (RIS), has emerged to enhance the signal transmission quality of wireless communications. This paper a RIS-assisted mmWave multiple-input multiple-output system, where practical finite discrete phase-shift constraints are crucial. Then, we discuss the connection between the channel state information (CSI) and the devices' location information in the mmWave band. To provide a model-free and CSI-free solution, the advanced deep reinforcement learning (DRL) technique is proposed for the RIS-assisted system based on the devices' location information. Moreover, we also apply the deep quantization neural network (DQNN) in the proposed DRL algorithm for the practical finite discrete phase-shift constraint. Finally, simulation results demonstrate the viability and efficacy of our proposed approach.
基于深度强化学习的ris辅助毫米波MIMO系统的实用设计
为了提高无线通信的信号传输质量,出现了一种革命性的技术——可重构智能表面(RIS)。本文研究了ris辅助毫米波多输入多输出系统,其中实际的有限离散相移约束是至关重要的。然后,我们讨论了毫米波频段信道状态信息(CSI)与设备位置信息之间的联系。为了提供无模型和无csi的解决方案,提出了基于设备位置信息的高级深度强化学习(DRL)技术。此外,我们还将深度量化神经网络(DQNN)应用于实际的有限离散相移约束的DRL算法中。最后,仿真结果验证了该方法的可行性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信