Multi-Connection of Double Residual Block for YOLOv5 Object Detection

Chenguang Li, C. Su
{"title":"Multi-Connection of Double Residual Block for YOLOv5 Object Detection","authors":"Chenguang Li, C. Su","doi":"10.1109/ICASI55125.2022.9774468","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a different method of deepening the network model of YOLOv5s6 and design three types of Multi-Connection (MC) blocks that are suitable for specific datasets. The main purpose of Multi-Connection block is to reuse features and retain input features for passing down. Eight public datasets and one customized dataset are experimented for verification. We improve the residual block in YOLOv5. The results show that the average precision (AP) can be increased. Compared with the YOLOv5s6, YOLOv5s6 with MC type I increases the AP by 1.6% in the Global Wheat Head Dataset 2020, YOLOv5s6 with MC type II increases the AP by 2.9% in the PlanDoc dataset, and YOLOv5s6 with MC type III increases the AP by 2.9% in the PASCAL Visual Object Classes (VOC) dataset. Using the multi-connection of double residual block performs better than the original residual block of YOLOv5s6.","PeriodicalId":190229,"journal":{"name":"2022 8th International Conference on Applied System Innovation (ICASI)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 8th International Conference on Applied System Innovation (ICASI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASI55125.2022.9774468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we propose a different method of deepening the network model of YOLOv5s6 and design three types of Multi-Connection (MC) blocks that are suitable for specific datasets. The main purpose of Multi-Connection block is to reuse features and retain input features for passing down. Eight public datasets and one customized dataset are experimented for verification. We improve the residual block in YOLOv5. The results show that the average precision (AP) can be increased. Compared with the YOLOv5s6, YOLOv5s6 with MC type I increases the AP by 1.6% in the Global Wheat Head Dataset 2020, YOLOv5s6 with MC type II increases the AP by 2.9% in the PlanDoc dataset, and YOLOv5s6 with MC type III increases the AP by 2.9% in the PASCAL Visual Object Classes (VOC) dataset. Using the multi-connection of double residual block performs better than the original residual block of YOLOv5s6.
YOLOv5目标检测中双残留块的多连接
在本文中,我们提出了一种加深YOLOv5s6网络模型的不同方法,并设计了三种适合特定数据集的Multi-Connection (MC)块。多连接块的主要目的是重用特征并保留输入特征以便向下传递。实验验证了8个公共数据集和1个定制数据集。我们改进了YOLOv5中的剩余块。结果表明,该方法可以提高平均精度。与YOLOv5s6相比,MC类型I的YOLOv5s6在全球小麦头数据集2020中提高了1.6%的AP, MC类型II的YOLOv5s6在PlanDoc数据集中提高了2.9%的AP, MC类型III的YOLOv5s6在PASCAL视觉对象类(VOC)数据集中提高了2.9%的AP。采用双残留块的多连接方式,性能优于YOLOv5s6原有残留块。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信