Bipolar vector classifier for fault-tolerant deep neural networks

Suyong Lee, Insu Choi, Joon-Sung Yang
{"title":"Bipolar vector classifier for fault-tolerant deep neural networks","authors":"Suyong Lee, Insu Choi, Joon-Sung Yang","doi":"10.1145/3489517.3530498","DOIUrl":null,"url":null,"abstract":"Deep Neural Networks (DNNs) surpass the human-level performance on specific tasks. The outperforming capability accelerate an adoption of DNNs to safety-critical applications such as autonomous vehicles and medical diagnosis. Millions of parameters in DNN requires a high memory capacity. A process technology scaling allows increasing memory density, however, the memory reliability confronts significant reliability issues causing errors in the memory. This can make stored weights in memory erroneous. Studies show that the erroneous weights can cause a significant accuracy loss. This motivates research on fault-tolerant DNN architectures. Despite of these efforts, DNNs are still vulnerable to errors, especially error in DNN classifier. In the worst case, because a classifier in convolutional neural network (CNN) is the last stage determining an input class, a single error in the classifier can cause a significant accuracy drop. To enhance the fault tolerance in CNN, this paper proposes a novel bipolar vector classifier which can be easily integrated with any CNN structures and can be incorporated with other fault tolerance approaches. Experimental results show that the proposed method stably maintains an accuracy with a high bit error rate up to 10−3 in the classifier.","PeriodicalId":373005,"journal":{"name":"Proceedings of the 59th ACM/IEEE Design Automation Conference","volume":"510 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 59th ACM/IEEE Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3489517.3530498","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Deep Neural Networks (DNNs) surpass the human-level performance on specific tasks. The outperforming capability accelerate an adoption of DNNs to safety-critical applications such as autonomous vehicles and medical diagnosis. Millions of parameters in DNN requires a high memory capacity. A process technology scaling allows increasing memory density, however, the memory reliability confronts significant reliability issues causing errors in the memory. This can make stored weights in memory erroneous. Studies show that the erroneous weights can cause a significant accuracy loss. This motivates research on fault-tolerant DNN architectures. Despite of these efforts, DNNs are still vulnerable to errors, especially error in DNN classifier. In the worst case, because a classifier in convolutional neural network (CNN) is the last stage determining an input class, a single error in the classifier can cause a significant accuracy drop. To enhance the fault tolerance in CNN, this paper proposes a novel bipolar vector classifier which can be easily integrated with any CNN structures and can be incorporated with other fault tolerance approaches. Experimental results show that the proposed method stably maintains an accuracy with a high bit error rate up to 10−3 in the classifier.
深度容错神经网络的双极向量分类器
深度神经网络(dnn)在特定任务上的表现超过了人类水平。卓越的性能加速了dnn在自动驾驶汽车和医疗诊断等安全关键应用中的应用。深度神经网络中数以百万计的参数需要高内存容量。进程技术的扩展允许增加内存密度,但是,内存可靠性面临严重的可靠性问题,导致内存错误。这可能使存储在内存中的权重出错。研究表明,错误的权重会导致显著的精度损失。这激发了对容错深度神经网络架构的研究。尽管做出了这些努力,但DNN仍然容易受到错误的影响,尤其是DNN分类器的错误。在最坏的情况下,由于卷积神经网络(CNN)中的分类器是确定输入类的最后阶段,因此分类器中的单个错误可能导致准确率大幅下降。为了提高CNN的容错能力,本文提出了一种新的双极向量分类器,该分类器可以很容易地与任何CNN结构集成,也可以与其他容错方法相结合。实验结果表明,该方法在分类器中稳定地保持了高达10−3的高误码率的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信