Prediction of Performance for an Ejector Refrigeration Cycle Working with R245fa Using Artificial Neural Network

Mehdi Bencharif, S. Croquer, Sébastien Poncet, S. Zid, H. Nesreddine
{"title":"Prediction of Performance for an Ejector Refrigeration Cycle Working\nwith R245fa Using Artificial Neural Network","authors":"Mehdi Bencharif, S. Croquer, Sébastien Poncet, S. Zid, H. Nesreddine","doi":"10.11159/icffts20.120","DOIUrl":null,"url":null,"abstract":"In this paper, an artificial neural network (ANN) model is used to predict the performance parameters of an ejector refrigeration cycle working with R245fa. Three approaches are used to achieve this objective: experimental analysis, thermodynamic modeling, and artificial neural network. Fourteen parameters were collected from eight numerical or experimental studies. The ANN input parameters include geometric features (Dcol, Dprimout, NXP, Dcas, Lcas, Dout, Ldiff) and operating conditions (Pprim, Tprim, Psec, Tsec, Tcond), while the outputs are the ejector performance metrics. A computer program has been written in MATLAB using a neural network toolbox. The mean-square error (MSE) and the linear coefficient of correlation (R) have been chosen as metrics to evaluate the performance function and accuracy of the ANN model. In terms of the limiting compression ratio (Pcr) and entrainment ratio (ω), the ANN deviates by 3.63 (%) and 1.52 (%) respectively relative to the experimental data and by -4.01 (%) and -6.17 (%) relative to the thermodynamic model predictions.","PeriodicalId":104107,"journal":{"name":"Proceedings of the International Conference on Fluid Flow and Thermal Science (ICFFTS'20)","volume":"159 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference on Fluid Flow and Thermal Science (ICFFTS'20)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11159/icffts20.120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, an artificial neural network (ANN) model is used to predict the performance parameters of an ejector refrigeration cycle working with R245fa. Three approaches are used to achieve this objective: experimental analysis, thermodynamic modeling, and artificial neural network. Fourteen parameters were collected from eight numerical or experimental studies. The ANN input parameters include geometric features (Dcol, Dprimout, NXP, Dcas, Lcas, Dout, Ldiff) and operating conditions (Pprim, Tprim, Psec, Tsec, Tcond), while the outputs are the ejector performance metrics. A computer program has been written in MATLAB using a neural network toolbox. The mean-square error (MSE) and the linear coefficient of correlation (R) have been chosen as metrics to evaluate the performance function and accuracy of the ANN model. In terms of the limiting compression ratio (Pcr) and entrainment ratio (ω), the ANN deviates by 3.63 (%) and 1.52 (%) respectively relative to the experimental data and by -4.01 (%) and -6.17 (%) relative to the thermodynamic model predictions.
基于人工神经网络的R245fa喷射器制冷循环性能预测
本文采用人工神经网络(ANN)模型对R245fa喷射式制冷循环的性能参数进行了预测。三种方法被用来实现这一目标:实验分析,热力学建模和人工神经网络。从8个数值或实验研究中收集了14个参数。人工神经网络的输入参数包括几何特征(Dcol, Dprimout, NXP, Dcas, Lcas, Dout, Ldiff)和操作条件(prim, Tprim, Psec, Tsec, Tcond),而输出是弹射器的性能指标。利用神经网络工具箱在MATLAB中编写了一个计算机程序。选择均方误差(MSE)和线性相关系数(R)作为指标来评价人工神经网络模型的性能函数和精度。在极限压缩比(Pcr)和夹带比(ω)方面,人工神经网络相对于实验数据分别偏离了3.63(%)和1.52(%),相对于热力学模型预测分别偏离了-4.01(%)和-6.17(%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信