Architecture and implementation of a Restricted Boltzmann Machine for handwritten digits recognition

Nikolaos Toulgaridis, E. Bougioukou, T. Antonakopoulos
{"title":"Architecture and implementation of a Restricted Boltzmann Machine for handwritten digits recognition","authors":"Nikolaos Toulgaridis, E. Bougioukou, T. Antonakopoulos","doi":"10.1109/MOCAST.2017.7937689","DOIUrl":null,"url":null,"abstract":"Restricted Boltzmann Machines are artificial neural networks used in many types of statistical classification. In this work we present the architecture and implementation of such a neural network for fast recognition of hand-written digits. We use fixed and floating point arithmetic for minimizing the required hardware resources, and the use of pipeline results to a processing rate of more than 1 Mimages/sec per RBM. Four neural networks have been used on a PCIe-based hardware accelerator that uses a Virtex-7 FPGA, and that results to a total processing rate of more than 4 Mimages/sec.","PeriodicalId":202381,"journal":{"name":"2017 6th International Conference on Modern Circuits and Systems Technologies (MOCAST)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 6th International Conference on Modern Circuits and Systems Technologies (MOCAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MOCAST.2017.7937689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Restricted Boltzmann Machines are artificial neural networks used in many types of statistical classification. In this work we present the architecture and implementation of such a neural network for fast recognition of hand-written digits. We use fixed and floating point arithmetic for minimizing the required hardware resources, and the use of pipeline results to a processing rate of more than 1 Mimages/sec per RBM. Four neural networks have been used on a PCIe-based hardware accelerator that uses a Virtex-7 FPGA, and that results to a total processing rate of more than 4 Mimages/sec.
用于手写数字识别的受限玻尔兹曼机的结构与实现
受限玻尔兹曼机是用于多种统计分类的人工神经网络。在这项工作中,我们提出了这种快速识别手写数字的神经网络的架构和实现。我们使用固定和浮点算法来最小化所需的硬件资源,并且使用流水线导致每个RBM的处理速率超过1 m /秒。在使用Virtex-7 FPGA的基于pcie的硬件加速器上使用了四个神经网络,其结果是总处理速率超过4 m /秒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信