{"title":"Action unit reconstruction of occluded facial expression","authors":"Chung-Hsien Wu, Jen-Chun Lin, Wen-Li Wei","doi":"10.1109/ICOT.2014.6956628","DOIUrl":null,"url":null,"abstract":"Facial occlusion is a critical issue that may dramatically degrade the performance on facial expression-based emotion recognition. In this study, the Error Weighted Cross-Correlation Model (EWCCM) is employed to predict the facial Action Unit (AU) under partial facial occlusion from non-occluded facial regions for facial geometric feature reconstruction. In EWCCM, a Gaussian Mixture Model (GMM)-based Cross-Correlation Model (CCM) is first adopted to construct the statistical dependency among features from paired facial components such as eyebrows-cheeks of the non-occluded regions for AU prediction of the occluded region. A Bayesian classifier weighting scheme is then used to enhance the AU prediction accuracy considering the contributions of the GMM-based CCMs. Based on the predicted AU, a regression fusion scheme is proposed to reconstruct the occluded facial geometric features. Experimental results show that the proposed approach yielded satisfactory results on the NCKU-FEPO database for facial AU reconstruction.","PeriodicalId":343641,"journal":{"name":"2014 International Conference on Orange Technologies","volume":"199 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Orange Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOT.2014.6956628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Facial occlusion is a critical issue that may dramatically degrade the performance on facial expression-based emotion recognition. In this study, the Error Weighted Cross-Correlation Model (EWCCM) is employed to predict the facial Action Unit (AU) under partial facial occlusion from non-occluded facial regions for facial geometric feature reconstruction. In EWCCM, a Gaussian Mixture Model (GMM)-based Cross-Correlation Model (CCM) is first adopted to construct the statistical dependency among features from paired facial components such as eyebrows-cheeks of the non-occluded regions for AU prediction of the occluded region. A Bayesian classifier weighting scheme is then used to enhance the AU prediction accuracy considering the contributions of the GMM-based CCMs. Based on the predicted AU, a regression fusion scheme is proposed to reconstruct the occluded facial geometric features. Experimental results show that the proposed approach yielded satisfactory results on the NCKU-FEPO database for facial AU reconstruction.