AutoMPR: Automatic detection of standard planes in 3D echocardiography

Xiaoguang Lu, B. Georgescu, Yefeng Zheng, Joanne Otsuki, D. Comaniciu
{"title":"AutoMPR: Automatic detection of standard planes in 3D echocardiography","authors":"Xiaoguang Lu, B. Georgescu, Yefeng Zheng, Joanne Otsuki, D. Comaniciu","doi":"10.1109/ISBI.2008.4541237","DOIUrl":null,"url":null,"abstract":"3D echocardiography is one of the emerging real-time imaging modalities that is increasingly used in clinical practice to assess cardiac functions. It provides a more complete heart representation for evaluation in comparison to conventional 2D echocardiography. However, one of the drawbacks is the time it takes clinicians to navigate the 3D volumes to the anatomy of interest and to obtain standardized views that are similar to the 2D acquisitions. We propose an automated supervised learning method to detect standard multiplanar reformatted planes (MPRs) from a 3D echocardiographic volume. Extensive evaluations on a database of 326 volumes show performance comparable to intra-user variability and the execution time of the algorithm is about 2 seconds.","PeriodicalId":184204,"journal":{"name":"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2008.4541237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

Abstract

3D echocardiography is one of the emerging real-time imaging modalities that is increasingly used in clinical practice to assess cardiac functions. It provides a more complete heart representation for evaluation in comparison to conventional 2D echocardiography. However, one of the drawbacks is the time it takes clinicians to navigate the 3D volumes to the anatomy of interest and to obtain standardized views that are similar to the 2D acquisitions. We propose an automated supervised learning method to detect standard multiplanar reformatted planes (MPRs) from a 3D echocardiographic volume. Extensive evaluations on a database of 326 volumes show performance comparable to intra-user variability and the execution time of the algorithm is about 2 seconds.
AutoMPR:三维超声心动图中标准平面的自动检测
三维超声心动图是一种新兴的实时成像方式,在临床实践中越来越多地用于评估心功能。与传统的二维超声心动图相比,它提供了更完整的心脏表征。然而,其中一个缺点是临床医生需要花费时间来导航3D体积到感兴趣的解剖结构,并获得类似于2D采集的标准化视图。我们提出了一种自动监督学习方法,用于从三维超声心动图容积中检测标准多平面重构平面(MPRs)。对326个卷的数据库进行广泛的评估表明,该算法的性能与用户内部的可变性相当,执行时间约为2秒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信