An Enhanced Light Gradient Boosting Regressor for Virtual Sensing of CO, HC and NOx

Emanuele Giovannardi, A. Brusa, Boris Petrone, N. Cavina, E. Corti, Massimo Barichello
{"title":"An Enhanced Light Gradient Boosting Regressor for Virtual Sensing of CO, HC and NOx","authors":"Emanuele Giovannardi, A. Brusa, Boris Petrone, N. Cavina, E. Corti, Massimo Barichello","doi":"10.1109/MetroAutomotive57488.2023.10219122","DOIUrl":null,"url":null,"abstract":"The present study introduces a novel methodology that utilizes Light Gradient Boosting Regressors to predict engine-out emissions of NOx, HC, and CO. The accuracy of the proposed models is evaluated on different types of homologation cycles. The dataset used in this study is derived from a set of 47 experimental driving cycles, including RDE, WLTC, NEDC, ECE, US06, and HWFET. The experimental driving cycles are performed on a roll bench using a spark-ignited, naturally aspirated, V12 engine-equipped vehicle. A three-second sliding window is incorporated in the models to capture the dynamic behavior of pollutant emissions. The performance of the LightGBR models is assessed using the mean absolute percentage error (MAPE) on the total pollutant mass, which is found to be 5.2% for CO, 5.7% for HC, and 6.8% for NOx. The results demonstrate the efficacy of the proposed methodology, which can be used to estimate the impact of powertrain calibration changes on pollutant emissions in a virtual environment, thereby reducing the number and the cost of the experimental tests.","PeriodicalId":115847,"journal":{"name":"2023 IEEE International Workshop on Metrology for Automotive (MetroAutomotive)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Workshop on Metrology for Automotive (MetroAutomotive)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MetroAutomotive57488.2023.10219122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The present study introduces a novel methodology that utilizes Light Gradient Boosting Regressors to predict engine-out emissions of NOx, HC, and CO. The accuracy of the proposed models is evaluated on different types of homologation cycles. The dataset used in this study is derived from a set of 47 experimental driving cycles, including RDE, WLTC, NEDC, ECE, US06, and HWFET. The experimental driving cycles are performed on a roll bench using a spark-ignited, naturally aspirated, V12 engine-equipped vehicle. A three-second sliding window is incorporated in the models to capture the dynamic behavior of pollutant emissions. The performance of the LightGBR models is assessed using the mean absolute percentage error (MAPE) on the total pollutant mass, which is found to be 5.2% for CO, 5.7% for HC, and 6.8% for NOx. The results demonstrate the efficacy of the proposed methodology, which can be used to estimate the impact of powertrain calibration changes on pollutant emissions in a virtual environment, thereby reducing the number and the cost of the experimental tests.
用于CO、HC和NOx虚拟传感的增强型光梯度增强回归器
本研究介绍了一种新的方法,该方法利用光梯度增强回归器来预测发动机排出的NOx、HC和CO的排放。所提出模型的准确性在不同类型的认证循环中进行了评估。本研究中使用的数据集来自一组47个实验驾驶循环,包括RDE、WLTC、NEDC、ECE、US06和HWFET。实验驾驶循环是在使用火花点燃,自然吸气,配备V12发动机的车辆的滚动台上进行的。在模型中加入了一个三秒滑动窗口,以捕捉污染物排放的动态行为。使用污染物总质量的平均绝对百分比误差(MAPE)来评估LightGBR模型的性能,其中CO为5.2%,HC为5.7%,NOx为6.8%。实验结果验证了该方法的有效性,该方法可用于估计虚拟环境中动力总成标定变化对污染物排放的影响,从而减少实验测试的次数和成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信