A GPU parallel implementation of the Local Principal Component Analysis overcomplete method for DW image denoising

S. Cuomo, P. D. Michele, A. Galletti, L. Marcellino
{"title":"A GPU parallel implementation of the Local Principal Component Analysis overcomplete method for DW image denoising","authors":"S. Cuomo, P. D. Michele, A. Galletti, L. Marcellino","doi":"10.1109/ISCC.2016.7543709","DOIUrl":null,"url":null,"abstract":"We focus on the Overcomplete Local Principal Component Analysis (OLPCA) method, which is widely adopted as denoising filter. We propose a programming approach resorting to Graphic Processor Units (GPUs), in order to massively parallelize some heavy computational tasks of the method. In our approach, we design and implement a parallel version of the OLPCA, by using a suitable mapping of the tasks on a GPU architecture with the aim to investigate the performance and the denoising features of the algorithm. The experimental results show improvements in terms of GFlops and memory throughput.","PeriodicalId":148096,"journal":{"name":"2016 IEEE Symposium on Computers and Communication (ISCC)","volume":"315 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Symposium on Computers and Communication (ISCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCC.2016.7543709","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

We focus on the Overcomplete Local Principal Component Analysis (OLPCA) method, which is widely adopted as denoising filter. We propose a programming approach resorting to Graphic Processor Units (GPUs), in order to massively parallelize some heavy computational tasks of the method. In our approach, we design and implement a parallel version of the OLPCA, by using a suitable mapping of the tasks on a GPU architecture with the aim to investigate the performance and the denoising features of the algorithm. The experimental results show improvements in terms of GFlops and memory throughput.
局部主成分分析过完备方法在DW图像去噪中的GPU并行实现
本文重点研究了目前广泛应用的局部主成分分析(OLPCA)方法。我们提出了一种利用图形处理器单元(gpu)的编程方法,以大规模并行化该方法的一些繁重的计算任务。在我们的方法中,我们设计并实现了OLPCA的并行版本,通过在GPU架构上使用适当的任务映射,目的是研究该算法的性能和去噪特征。实验结果表明,在GFlops和内存吞吐量方面有所改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信