Variational Gaussian Mixture Models for Speech Emotion Recognition

H. K. Mishra, C. Sekhar
{"title":"Variational Gaussian Mixture Models for Speech Emotion Recognition","authors":"H. K. Mishra, C. Sekhar","doi":"10.1109/ICAPR.2009.89","DOIUrl":null,"url":null,"abstract":"In this paper applicability of variational methods for estimation of parameters of models used for speech emotion recognition is discussed.When the amount of data available is not adequate for training complex models, variational Bayesian method helps in training models with less amount of data. It also helps in determining the optimal complexity of the model. Our studies on Berlin emotional speech database show that variational methods perform better than maximum likelihood approach to estimate parameters of Gaussian mixture models used in speech emotion recognition.","PeriodicalId":443926,"journal":{"name":"2009 Seventh International Conference on Advances in Pattern Recognition","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Seventh International Conference on Advances in Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAPR.2009.89","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

In this paper applicability of variational methods for estimation of parameters of models used for speech emotion recognition is discussed.When the amount of data available is not adequate for training complex models, variational Bayesian method helps in training models with less amount of data. It also helps in determining the optimal complexity of the model. Our studies on Berlin emotional speech database show that variational methods perform better than maximum likelihood approach to estimate parameters of Gaussian mixture models used in speech emotion recognition.
语音情感识别的变分高斯混合模型
本文讨论了变分方法在语音情感识别模型参数估计中的适用性。当可用的数据量不足以训练复杂模型时,变分贝叶斯方法有助于训练数据量较少的模型。它还有助于确定模型的最优复杂性。我们在柏林情绪语音数据库上的研究表明,变分方法在估计语音情感识别中使用的高斯混合模型参数方面优于最大似然方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信