Robust Human Tracking to Occlusion in Crowded Scenes

Hiromasa Takada, K. Hotta
{"title":"Robust Human Tracking to Occlusion in Crowded Scenes","authors":"Hiromasa Takada, K. Hotta","doi":"10.1109/DICTA.2015.7371302","DOIUrl":null,"url":null,"abstract":"Human tracking in crowded scenes is a challenging problem because occlusion is frequently occurred. In this paper, we propose an online human tracking method which can handle occlusion effectively. Our method automatically changes a learning rate for updating tracking model according to the situation. If the tracking target is under occlusion, the learning rate decreases to reduce the influence of occlusion. However, the similarity score decreases by scale change of a tracking target as well as occlusion. To judge the occlusion or scale change, the similarity score on the Log-Polar coordinate is used. Furthermore, the size of search region is also changed according to the information about occlusion at previous frame. Experiments using the PETS2009 dataset show that our method improves tracking accuracy in crowded scenes.","PeriodicalId":214897,"journal":{"name":"2015 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2015.7371302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Human tracking in crowded scenes is a challenging problem because occlusion is frequently occurred. In this paper, we propose an online human tracking method which can handle occlusion effectively. Our method automatically changes a learning rate for updating tracking model according to the situation. If the tracking target is under occlusion, the learning rate decreases to reduce the influence of occlusion. However, the similarity score decreases by scale change of a tracking target as well as occlusion. To judge the occlusion or scale change, the similarity score on the Log-Polar coordinate is used. Furthermore, the size of search region is also changed according to the information about occlusion at previous frame. Experiments using the PETS2009 dataset show that our method improves tracking accuracy in crowded scenes.
拥挤场景中对遮挡的鲁棒人体跟踪
在拥挤的场景中,人类的跟踪是一个具有挑战性的问题,因为遮挡经常发生。本文提出了一种能够有效处理遮挡的在线人体跟踪方法。我们的方法会根据情况自动改变一个学习率来更新跟踪模型。当跟踪目标被遮挡时,学习率降低以减少遮挡的影响。然而,由于跟踪目标的尺度变化和遮挡,相似度得分会降低。为了判断遮挡或尺度变化,使用对数极坐标上的相似度评分。此外,还根据前一帧的遮挡信息改变搜索区域的大小。使用PETS2009数据集进行的实验表明,该方法提高了拥挤场景下的跟踪精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信