Sentiment Analysis of the COVID-19 Epidemic Based on Deep Learning

Yingying Mei, Yuanyuan Wang
{"title":"Sentiment Analysis of the COVID-19 Epidemic Based on Deep Learning","authors":"Yingying Mei, Yuanyuan Wang","doi":"10.1109/PRMVIA58252.2023.00040","DOIUrl":null,"url":null,"abstract":"Twitter text sentiment analysis has important applications in public sentiment monitoring. The results of sentiment analysis based on traditional machine learning models and sentiment dictionaries are often unsatisfactory. How to optimize the performance of public opinion sentiment analysis has become an important challenge in this field. This paper uses the BERT model based on deep learning to complete the language understanding task and compares the performance with the traditional practice. The results show that the BERT model achieves better performance, reaching more than 90%. The model was then used to perform three classifications to analyze Twitter comments during the COVID-19 outbreak, and overall positive sentiment and neutral sentiment dominated. In addition, we also conduct related analysis on word frequency, word cloud and time comparison, in order to achieve the purpose of comprehensively understanding the social-emotional state during the epidemic.","PeriodicalId":221346,"journal":{"name":"2023 International Conference on Pattern Recognition, Machine Vision and Intelligent Algorithms (PRMVIA)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Pattern Recognition, Machine Vision and Intelligent Algorithms (PRMVIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRMVIA58252.2023.00040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Twitter text sentiment analysis has important applications in public sentiment monitoring. The results of sentiment analysis based on traditional machine learning models and sentiment dictionaries are often unsatisfactory. How to optimize the performance of public opinion sentiment analysis has become an important challenge in this field. This paper uses the BERT model based on deep learning to complete the language understanding task and compares the performance with the traditional practice. The results show that the BERT model achieves better performance, reaching more than 90%. The model was then used to perform three classifications to analyze Twitter comments during the COVID-19 outbreak, and overall positive sentiment and neutral sentiment dominated. In addition, we also conduct related analysis on word frequency, word cloud and time comparison, in order to achieve the purpose of comprehensively understanding the social-emotional state during the epidemic.
基于深度学习的COVID-19疫情情绪分析
Twitter文本情感分析在公众情绪监测中有着重要的应用。基于传统机器学习模型和情感词典的情感分析结果往往不令人满意。如何优化舆情分析的性能已成为该领域的重要挑战。本文采用基于深度学习的BERT模型来完成语言理解任务,并与传统实践进行了性能比较。结果表明,BERT模型取得了较好的性能,达到了90%以上。然后使用该模型进行三种分类来分析新冠肺炎疫情期间的推特评论,总体上积极情绪和中性情绪占主导地位。此外,我们还进行了词频、词云、时间对比等相关分析,以达到全面了解疫情期间社会情绪状态的目的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信