RBF approach for trajectory interpolation in self-organizing map based condition monitoring

I.D. Blanco, A.B. Diez Gonzalez, A.A. Cuadrado Vega, J. E. Enguita González
{"title":"RBF approach for trajectory interpolation in self-organizing map based condition monitoring","authors":"I.D. Blanco, A.B. Diez Gonzalez, A.A. Cuadrado Vega, J. E. Enguita González","doi":"10.1109/ETFA.1999.813101","DOIUrl":null,"url":null,"abstract":"Self-organizing map trajectory interpolation using radial basis functions is proposed for process condition monitoring. Self-organizing maps are a powerful means to visualize the state of a process. However, a quantization process takes place when input vectors are mapped onto the grid (output) space. The discrete nature of the output space gives rise to a considerable loss of information which is particularly harmful to detect incipient faults which are often revealed by drifts or slight changes in the state trajectory. A continuous projection from the input space onto the SOM grid space using RBF-based interpolation is proposed and tested with experimental data.","PeriodicalId":119106,"journal":{"name":"1999 7th IEEE International Conference on Emerging Technologies and Factory Automation. Proceedings ETFA '99 (Cat. No.99TH8467)","volume":"352 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1999 7th IEEE International Conference on Emerging Technologies and Factory Automation. Proceedings ETFA '99 (Cat. No.99TH8467)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETFA.1999.813101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Self-organizing map trajectory interpolation using radial basis functions is proposed for process condition monitoring. Self-organizing maps are a powerful means to visualize the state of a process. However, a quantization process takes place when input vectors are mapped onto the grid (output) space. The discrete nature of the output space gives rise to a considerable loss of information which is particularly harmful to detect incipient faults which are often revealed by drifts or slight changes in the state trajectory. A continuous projection from the input space onto the SOM grid space using RBF-based interpolation is proposed and tested with experimental data.
基于自组织映射的状态监测中轨迹插值的RBF方法
提出了一种基于径向基函数的自组织映射轨迹插值方法。自组织映射是可视化流程状态的强大手段。然而,当输入向量被映射到网格(输出)空间时,就会发生量化过程。输出空间的离散性导致了相当大的信息损失,这对检测早期故障尤其有害,这些故障通常由状态轨迹的漂移或微小变化所揭示。提出了一种基于rbf插值的从输入空间到SOM网格空间的连续投影方法,并用实验数据进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信