Surabhi Garg, Meena Singh Dilip Thakur, R. A, L. Maddali, Vigneswaran Ramachandran
{"title":"PrivFlow: Secure and Privacy Preserving Serverless Workflows on Cloud","authors":"Surabhi Garg, Meena Singh Dilip Thakur, R. A, L. Maddali, Vigneswaran Ramachandran","doi":"10.1109/CCGrid57682.2023.00049","DOIUrl":null,"url":null,"abstract":"The recent advancement of serverless computing in the widespread deployment of applications prompts the need to protect serverless workflows against cloud vulnerabilities and threats. We propose PrivFlow, a workflow-centric, privacy preserving framework to protect the information flow in serverless computing applications in semi-honest (S-PrivFlow) and malicious (M-PrivFlow) adversarial settings. An Authenticated Data Structure is used to store the valid workflows encoded in the proposed format. The validation of workflows is performed in a privacy preserving manner that leaks no sensitive information to any unauthorized user. We focus on the two most prevalent attacks on the serverless cloud platforms, namely the Denial-of-Wallet and Wrong Function Invocation attacks. We demonstrate that PrivFlow mitigates both of these attacks. Further, we evaluate PrivFlow on the popular benchmark application- Hello Retail, and a customized scaled application. Though the comparison with the state-of-the-art approaches in terms of the runtime performance shows a latency of 1.6 times for S-PrivFlow and 8 times for M-PrivFlow, the PrivFlow provides high security and privacy. PrivFlow acts as a wrapper to the application resulting in no change to the source code.","PeriodicalId":363806,"journal":{"name":"2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud and Internet Computing (CCGrid)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud and Internet Computing (CCGrid)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGrid57682.2023.00049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The recent advancement of serverless computing in the widespread deployment of applications prompts the need to protect serverless workflows against cloud vulnerabilities and threats. We propose PrivFlow, a workflow-centric, privacy preserving framework to protect the information flow in serverless computing applications in semi-honest (S-PrivFlow) and malicious (M-PrivFlow) adversarial settings. An Authenticated Data Structure is used to store the valid workflows encoded in the proposed format. The validation of workflows is performed in a privacy preserving manner that leaks no sensitive information to any unauthorized user. We focus on the two most prevalent attacks on the serverless cloud platforms, namely the Denial-of-Wallet and Wrong Function Invocation attacks. We demonstrate that PrivFlow mitigates both of these attacks. Further, we evaluate PrivFlow on the popular benchmark application- Hello Retail, and a customized scaled application. Though the comparison with the state-of-the-art approaches in terms of the runtime performance shows a latency of 1.6 times for S-PrivFlow and 8 times for M-PrivFlow, the PrivFlow provides high security and privacy. PrivFlow acts as a wrapper to the application resulting in no change to the source code.