Cascading Trilinear Tensors for Face Authentication

G. Wagner, E. Sinzinger
{"title":"Cascading Trilinear Tensors for Face Authentication","authors":"G. Wagner, E. Sinzinger","doi":"10.1109/WACV.2008.4544029","DOIUrl":null,"url":null,"abstract":"This paper presents a method to improve the accuracy rates of face authentication between images with different poses. Trilinear tensors are used to adjust the pose of the training and testing images. All the images are transformed by a pose adjustment algorithm so novel images are generated that have the same pose. These novel images are then used to train and test support vector machine (SVM) face authentication functions to verify the identity of the people in the images. The overall results show that the accuracy improves when the poses of the images are adjusted.","PeriodicalId":439571,"journal":{"name":"2008 IEEE Workshop on Applications of Computer Vision","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Workshop on Applications of Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV.2008.4544029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a method to improve the accuracy rates of face authentication between images with different poses. Trilinear tensors are used to adjust the pose of the training and testing images. All the images are transformed by a pose adjustment algorithm so novel images are generated that have the same pose. These novel images are then used to train and test support vector machine (SVM) face authentication functions to verify the identity of the people in the images. The overall results show that the accuracy improves when the poses of the images are adjusted.
用于人脸认证的级联三线性张量
提出了一种提高不同姿态图像间人脸识别准确率的方法。使用三线性张量来调整训练和测试图像的姿态。所有图像通过姿态调整算法进行变换,从而生成具有相同姿态的新图像。然后使用这些新图像来训练和测试支持向量机(SVM)人脸认证函数,以验证图像中人的身份。总体结果表明,调整图像的姿态后,精度有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信