MVN_CNN and UBN_CNN for endocardial edge detection

H. Ketout, J. Gu, G. Horne
{"title":"MVN_CNN and UBN_CNN for endocardial edge detection","authors":"H. Ketout, J. Gu, G. Horne","doi":"10.1109/ICNC.2011.6022163","DOIUrl":null,"url":null,"abstract":"In this paper, Universal Binary Neurons Cellular Neural Networks (UBN_CNN) endocardial edge detection is proposed. The echocardiographic image is preprocessed to enhance the contrast and smoothness by utilizing Multi Valued Neural Cellular Neural Networks (MVN_CNN) non linear filter. UBN_CNN is applied to the smoothed image to extract the heart boundaries. A non threshold Boolean function with nine variables is utilized to detect the edges corresponding to the upward and downward brightness overleaps. Some experimental results are given for different echocardiographic images. The combination of MVN_CNN and UBN_CNN approach showed better results for extracting the LV endocardial boundaries.","PeriodicalId":299503,"journal":{"name":"2011 Seventh International Conference on Natural Computation","volume":"126 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Seventh International Conference on Natural Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2011.6022163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this paper, Universal Binary Neurons Cellular Neural Networks (UBN_CNN) endocardial edge detection is proposed. The echocardiographic image is preprocessed to enhance the contrast and smoothness by utilizing Multi Valued Neural Cellular Neural Networks (MVN_CNN) non linear filter. UBN_CNN is applied to the smoothed image to extract the heart boundaries. A non threshold Boolean function with nine variables is utilized to detect the edges corresponding to the upward and downward brightness overleaps. Some experimental results are given for different echocardiographic images. The combination of MVN_CNN and UBN_CNN approach showed better results for extracting the LV endocardial boundaries.
MVN_CNN和UBN_CNN用于心内膜边缘检测
本文提出了一种通用二值神经元细胞神经网络(Universal Binary Neurons Cellular Neural Networks, UBN_CNN)心内膜边缘检测方法。利用多值神经细胞神经网络(MVN_CNN)非线性滤波对超声心动图图像进行预处理,增强图像的对比度和平滑度。对平滑后的图像应用UBN_CNN提取心脏边界。利用具有9个变量的非阈值布尔函数检测亮度向上和向下跨越对应的边缘。给出了不同超声心动图的实验结果。结合MVN_CNN和UBN_CNN方法提取左室心内膜边界效果较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信