Degree Tables for Secure Distributed Matrix Multiplication

Rafael G. L. D'Oliveira, S. Rouayheb, Daniel Heinlein, David A. Karpuk
{"title":"Degree Tables for Secure Distributed Matrix Multiplication","authors":"Rafael G. L. D'Oliveira, S. Rouayheb, Daniel Heinlein, David A. Karpuk","doi":"10.1109/ITW44776.2019.8989092","DOIUrl":null,"url":null,"abstract":"We consider the problem of secure distributed matrix multiplication (SDMM) in which a user wishes to compute the product of two matrices with the assistance of honest but curious servers. We construct polynomial codes for SDMM by studying a recently introduced combinatorial tool called the degree table. Maximizing the download rate of a polynomial code for SDMM is equivalent to minimizing N, the number of distinct elements in the corresponding degree table. We propose new constructions of degree tables with a low number of distinct elements. These new constructions lead to a general family of polynomial codes for SDMM, which we call $GASP_{r}$ (Gap Additive Secure Polynomial codes) parametrized by an integer r. $GASP_{r}$ outperforms all previously known polynomial codes for SDMM. We also present lower bounds on N and show that $GASP_{r}$ achieves the lower bounds in the case of no server collusion.","PeriodicalId":214379,"journal":{"name":"2019 IEEE Information Theory Workshop (ITW)","volume":"136 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Information Theory Workshop (ITW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW44776.2019.8989092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

We consider the problem of secure distributed matrix multiplication (SDMM) in which a user wishes to compute the product of two matrices with the assistance of honest but curious servers. We construct polynomial codes for SDMM by studying a recently introduced combinatorial tool called the degree table. Maximizing the download rate of a polynomial code for SDMM is equivalent to minimizing N, the number of distinct elements in the corresponding degree table. We propose new constructions of degree tables with a low number of distinct elements. These new constructions lead to a general family of polynomial codes for SDMM, which we call $GASP_{r}$ (Gap Additive Secure Polynomial codes) parametrized by an integer r. $GASP_{r}$ outperforms all previously known polynomial codes for SDMM. We also present lower bounds on N and show that $GASP_{r}$ achieves the lower bounds in the case of no server collusion.
安全分布式矩阵乘法的度数表
我们考虑安全分布式矩阵乘法(SDMM)问题,其中用户希望在诚实但好奇的服务器的帮助下计算两个矩阵的乘积。我们通过研究最近引入的一种称为度表的组合工具来构造SDMM的多项式码。最大化SDMM多项式代码的下载速率相当于最小化N,即相应度表中不同元素的数量。我们提出了具有少量不同元素的度表的新结构。这些新的结构导致了SDMM的一般多项式码族,我们称之为$GASP_{r}$(间隙加性安全多项式码),由整数r参数化。$GASP_{r}$优于所有已知的SDMM多项式码。我们还给出了N的下界,并表明$GASP_{r}$在没有服务器合谋的情况下达到了下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信