Brain connectivity analysis by reduction to pair classification

E. Olivetti, S. Veeramachaneni, Susanne Greiner, P. Avesani
{"title":"Brain connectivity analysis by reduction to pair classification","authors":"E. Olivetti, S. Veeramachaneni, Susanne Greiner, P. Avesani","doi":"10.1109/CIP.2010.5604101","DOIUrl":null,"url":null,"abstract":"Brain connectivity studies aim at describing the connections within the brain. Diffusion and functional MRI techniques provide different kinds of information to understand brain connectivity non-invasively. Fiber tract segmentation is the task of identifying pathways of neuronal axons connecting different brain areas from MRI data. In this work we propose a method to investigate the role of both diffusion and functional MRI data for supervised tract segmentation based on learning the pairwise relationships between streamlines. Experiments on real data demonstrate the promise of the approach.","PeriodicalId":171474,"journal":{"name":"2010 2nd International Workshop on Cognitive Information Processing","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd International Workshop on Cognitive Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIP.2010.5604101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Brain connectivity studies aim at describing the connections within the brain. Diffusion and functional MRI techniques provide different kinds of information to understand brain connectivity non-invasively. Fiber tract segmentation is the task of identifying pathways of neuronal axons connecting different brain areas from MRI data. In this work we propose a method to investigate the role of both diffusion and functional MRI data for supervised tract segmentation based on learning the pairwise relationships between streamlines. Experiments on real data demonstrate the promise of the approach.
基于约简对分类的脑连通性分析
大脑连通性研究旨在描述大脑内部的连接。弥散和功能性MRI技术提供了不同种类的信息来了解大脑的非侵入性连接。纤维束分割是通过MRI数据识别连接不同脑区的神经轴突通路的任务。在这项工作中,我们提出了一种基于学习流线之间的成对关系来研究扩散和功能MRI数据在监督束分割中的作用的方法。在实际数据上的实验证明了该方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信