Atmospheric Profiling in the Inter-Tropical Ocean Area Based on Neural Network Approach Using GPS Radio Occultations

S. Bonafoni
{"title":"Atmospheric Profiling in the Inter-Tropical Ocean Area Based on Neural Network Approach Using GPS Radio Occultations","authors":"S. Bonafoni","doi":"10.2174/1874282301004010202","DOIUrl":null,"url":null,"abstract":"In this study we have proposed a method based on neural networks to retrieve refractivity, temperature, pressure and humidity profiles by using FORMOSAT-3/COSMIC GPS radio occultation data. To overcome the constraint of an independent knowledge of one atmospheric parameter at each GPS occultation, we trained three neural networks with refractivity profiles as input computed from the geometrical occultation parameters relative to the FORMOSAT- 3/COSMIC satellites, while the targets were the dry and wet refractivity profiles and the dry pressure profiles obtained from the contemporary European Centre for Medium-Range Weather Forecast data. We have considered 1041 available satellite radio occultations covering the entire ocean area spanning within the Tropics during July-August 2006. We have used 937 profiles for training the neural networks, the remaining 104 ones for the independent test.","PeriodicalId":122982,"journal":{"name":"The Open Atmospheric Science Journal","volume":"224 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Open Atmospheric Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1874282301004010202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

In this study we have proposed a method based on neural networks to retrieve refractivity, temperature, pressure and humidity profiles by using FORMOSAT-3/COSMIC GPS radio occultation data. To overcome the constraint of an independent knowledge of one atmospheric parameter at each GPS occultation, we trained three neural networks with refractivity profiles as input computed from the geometrical occultation parameters relative to the FORMOSAT- 3/COSMIC satellites, while the targets were the dry and wet refractivity profiles and the dry pressure profiles obtained from the contemporary European Centre for Medium-Range Weather Forecast data. We have considered 1041 available satellite radio occultations covering the entire ocean area spanning within the Tropics during July-August 2006. We have used 937 profiles for training the neural networks, the remaining 104 ones for the independent test.
基于GPS掩星神经网络的热带洋间区大气剖面
本文提出了一种基于神经网络的方法,利用FORMOSAT-3/COSMIC GPS射电掩星数据检索折射率、温度、压力和湿度剖面。为了克服每次GPS掩星只需要一个大气参数的限制,我们以相对于FORMOSAT- 3/COSMIC卫星的几何掩星参数计算的折射率曲线作为输入,训练了三个神经网络,目标是当代欧洲中期天气预报中心数据获得的干、湿折射率曲线和干压力曲线。我们考虑了2006年7月至8月期间覆盖整个热带海洋区域的1041个可用卫星无线电掩星。我们使用了937个profile来训练神经网络,剩下的104个profile用于独立测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信