Reinforced model-agnostic counterfactual explanations for recommender systems

Ao Chang, Qingxian Wang
{"title":"Reinforced model-agnostic counterfactual explanations for recommender systems","authors":"Ao Chang, Qingxian Wang","doi":"10.1117/12.2682249","DOIUrl":null,"url":null,"abstract":"Explanation is an important requirement for transparent and trustworthy recommender systems. When the recommendation model itself is not explainable, an explanation must be generated post-hoc. In contrast to traditional post-hoc explanation methods, counterfactual methods can provide scrutable and actionable explanations with high fidelity. Existing counterfactual explanation methods for recommender systems are either not generalizable or face a huge search space. In this work, we propose a reinforcement learning counterfactual explanation method MACER (Model-Agnostic Counterfactual Explanations for Recommender Systems) which generates item-based explanations for recommender systems. We embed the discrete action space into a continuous space, making it possible to use the process of finding counterfactual explanations as a task of reinforcement learning. This method treats the recommender system as a black box (model-agnostic) and has no requirement on the type of recommender system, and thus is applicable to all recommendation systems.","PeriodicalId":177416,"journal":{"name":"Conference on Electronic Information Engineering and Data Processing","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Electronic Information Engineering and Data Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2682249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Explanation is an important requirement for transparent and trustworthy recommender systems. When the recommendation model itself is not explainable, an explanation must be generated post-hoc. In contrast to traditional post-hoc explanation methods, counterfactual methods can provide scrutable and actionable explanations with high fidelity. Existing counterfactual explanation methods for recommender systems are either not generalizable or face a huge search space. In this work, we propose a reinforcement learning counterfactual explanation method MACER (Model-Agnostic Counterfactual Explanations for Recommender Systems) which generates item-based explanations for recommender systems. We embed the discrete action space into a continuous space, making it possible to use the process of finding counterfactual explanations as a task of reinforcement learning. This method treats the recommender system as a black box (model-agnostic) and has no requirement on the type of recommender system, and thus is applicable to all recommendation systems.
推荐系统的强化模型不可知论反事实解释
解释是透明和值得信赖的推荐系统的重要要求。当推荐模型本身无法解释时,必须事后生成解释。与传统的事后解释方法相比,反事实方法可以提供高保真度的可解析和可操作的解释。现有的针对推荐系统的反事实解释方法要么不能泛化,要么面临巨大的搜索空间。在这项工作中,我们提出了一种强化学习反事实解释方法MACER(模型不可知论反事实解释推荐系统),它为推荐系统生成基于项目的解释。我们将离散的动作空间嵌入到连续的空间中,从而可以将寻找反事实解释的过程作为强化学习的任务。该方法将推荐系统视为黑盒(模型不可知),对推荐系统的类型没有要求,因此适用于所有的推荐系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信