EEG analysis of Evoked Potentials of the brain to develop a mathematical model for classifying Tinnitus datasets

Yasaman Emami, Coskun Bayrak
{"title":"EEG analysis of Evoked Potentials of the brain to develop a mathematical model for classifying Tinnitus datasets","authors":"Yasaman Emami, Coskun Bayrak","doi":"10.1109/MeMeA.2017.7985906","DOIUrl":null,"url":null,"abstract":"Tinnitus is hearing a sound of buzzing, ringing, whooshing, etc. when there are no actual sounds existing specially when the background is quiet. Per statistics from the American Tinnitus Association, these symptoms affect twenty percent of population's life. In this study, we investigate 12 individuals distributed between 6 normal subjects and 6 subjects suffering from Tinnitus to develop a mathematical model for identifying Tinnitus patients in compare with normal subjects using a 14-channel low cost commodity neuroheadset (Emotiv). Our pipeline involves collecting Electroencephalography (EEG) data from the 12 subjects. We then perform noise reduction, after that we split the data into training and testing datasets, followed by labeling, fusion and randomization using Independent Component Analysis approach to then be passed to several classification algorithms to be compared and chosen from the best candidate models based on the best calculated accuracy. We compare Support Vector Machine approach versus K Nearest Neighbor as final models. We then validate the selected model using the test data resulting in a model capable of classifying EEG data as Tinnitus or not. Our method demonstrates that commodity EEG neuroheadsets can be used to identify Tinnitus patients using our proposed model.","PeriodicalId":235051,"journal":{"name":"2017 IEEE International Symposium on Medical Measurements and Applications (MeMeA)","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Symposium on Medical Measurements and Applications (MeMeA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MeMeA.2017.7985906","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Tinnitus is hearing a sound of buzzing, ringing, whooshing, etc. when there are no actual sounds existing specially when the background is quiet. Per statistics from the American Tinnitus Association, these symptoms affect twenty percent of population's life. In this study, we investigate 12 individuals distributed between 6 normal subjects and 6 subjects suffering from Tinnitus to develop a mathematical model for identifying Tinnitus patients in compare with normal subjects using a 14-channel low cost commodity neuroheadset (Emotiv). Our pipeline involves collecting Electroencephalography (EEG) data from the 12 subjects. We then perform noise reduction, after that we split the data into training and testing datasets, followed by labeling, fusion and randomization using Independent Component Analysis approach to then be passed to several classification algorithms to be compared and chosen from the best candidate models based on the best calculated accuracy. We compare Support Vector Machine approach versus K Nearest Neighbor as final models. We then validate the selected model using the test data resulting in a model capable of classifying EEG data as Tinnitus or not. Our method demonstrates that commodity EEG neuroheadsets can be used to identify Tinnitus patients using our proposed model.
脑电诱发电位分析建立耳鸣数据集分类的数学模型
耳鸣是指在没有实际声音存在的情况下,特别是在安静的背景下,听到嗡嗡声、铃声、嗖嗖声等。根据美国耳鸣协会的统计数据,这些症状影响了20%的人的生活。在这项研究中,我们调查了分布在6名正常受试者和6名耳鸣患者之间的12个人,建立了一个数学模型,用于使用14通道低成本商品神经耳机(Emotiv)将耳鸣患者与正常受试者进行比较。我们的管道包括收集12名受试者的脑电图(EEG)数据。然后我们进行降噪,之后我们将数据分成训练和测试数据集,然后使用独立成分分析方法进行标记,融合和随机化,然后传递给几种分类算法进行比较,并根据最佳计算精度从最佳候选模型中选择。我们将支持向量机方法与K近邻方法作为最终模型进行比较。然后,我们使用测试数据验证所选模型,从而产生能够将EEG数据分类为耳鸣或非耳鸣的模型。我们的方法表明,商品脑电图神经耳机可以使用我们提出的模型来识别耳鸣患者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信