Denoising and wavelet-based feature extraction of MODIS multi-temporal vegetation signatures

L. Bruce, A. Mathur
{"title":"Denoising and wavelet-based feature extraction of MODIS multi-temporal vegetation signatures","authors":"L. Bruce, A. Mathur","doi":"10.2747/1548-1603.43.1.67","DOIUrl":null,"url":null,"abstract":"Temporal vegetation signatures (i.e., vegetation indices as functions of time) generated using the MODIS imagery poses many challenges, primarily due to signal-to-noise-related issues. This article describes the use of MODIS time-series data for the detection of specific tropical invasive species vegetation types. Due to challenges with the MODIS quality assurance data, a significant level of noise was present in the temporal signatures. This study investigated methods for denoising the vegetation temporal signatures, followed by a comparative analysis of three denoising methods to generate signatures for vegetation target detection. The analytical approach focused on the use of wavelet-based versus Fourier-based feature extraction methods. Methods included the development of a novel wavelet-based feature extraction method that quantifies the fundamental shape of the temporal signatures.","PeriodicalId":302923,"journal":{"name":"International Workshop on the Analysis of Multi-Temporal Remote Sensing Images, 2005.","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"54","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on the Analysis of Multi-Temporal Remote Sensing Images, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2747/1548-1603.43.1.67","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 54

Abstract

Temporal vegetation signatures (i.e., vegetation indices as functions of time) generated using the MODIS imagery poses many challenges, primarily due to signal-to-noise-related issues. This article describes the use of MODIS time-series data for the detection of specific tropical invasive species vegetation types. Due to challenges with the MODIS quality assurance data, a significant level of noise was present in the temporal signatures. This study investigated methods for denoising the vegetation temporal signatures, followed by a comparative analysis of three denoising methods to generate signatures for vegetation target detection. The analytical approach focused on the use of wavelet-based versus Fourier-based feature extraction methods. Methods included the development of a novel wavelet-based feature extraction method that quantifies the fundamental shape of the temporal signatures.
MODIS多时相植被特征去噪与小波特征提取
使用MODIS图像生成的时间植被特征(即作为时间函数的植被指数)存在许多挑战,主要是由于与信号-噪声相关的问题。本文介绍了利用MODIS时间序列数据检测特定热带入侵物种植被类型的方法。由于MODIS质量保证数据的挑战,在时间特征中存在显著水平的噪声。本文研究了植被时间特征的去噪方法,并对三种去噪方法进行了对比分析,生成用于植被目标检测的特征。分析方法侧重于使用基于小波和基于傅里叶的特征提取方法。方法包括开发一种新的基于小波的特征提取方法,该方法量化了时间特征的基本形状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信