CNN Inference Costs Estimation on Microcontrollers: the EST Primitive-based Model

Thomas Garbay, Petr Dobiáš, Wilfried Dron, Pedro Lusich, Imane Khalis, A. Pinna, K. Hachicha, B. Granado
{"title":"CNN Inference Costs Estimation on Microcontrollers: the EST Primitive-based Model","authors":"Thomas Garbay, Petr Dobiáš, Wilfried Dron, Pedro Lusich, Imane Khalis, A. Pinna, K. Hachicha, B. Granado","doi":"10.1109/icecs53924.2021.9665540","DOIUrl":null,"url":null,"abstract":"Neural network inference on embedded devices will have an important industrial impact on our society. Embedded devices are ubiquitous in many fields, like human activity recognition or visual object detection. As a matter of fact, Convolutional Neural Networks (CNNs) are now the best modality to solve most of computer vision problems. Although, the accuracy offered by these algorithms has a cost: an important energy consumption, a high execution time, and a significant memory footprint. This cost is a major challenge to implement CNNs within embedded devices with limited computational power, memory space and energy available. This makes prior estimation about the impact of a CNN on a given microcontroller, a design key point before applying neural network compression techniques. We introduce the EST primitive-based model to estimate the impact of a CNN on a microcontroller, regarding the latency, the power consumption and the needed memory space. The target hardware is the STM32L496ZG with CPU ARM Cortex M4 running at 14 different frequencies. Our model shows an average estimation error of 13.66% on latency, 5.52% on power consumption and 2.09% on needed memory space.","PeriodicalId":448558,"journal":{"name":"2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icecs53924.2021.9665540","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Neural network inference on embedded devices will have an important industrial impact on our society. Embedded devices are ubiquitous in many fields, like human activity recognition or visual object detection. As a matter of fact, Convolutional Neural Networks (CNNs) are now the best modality to solve most of computer vision problems. Although, the accuracy offered by these algorithms has a cost: an important energy consumption, a high execution time, and a significant memory footprint. This cost is a major challenge to implement CNNs within embedded devices with limited computational power, memory space and energy available. This makes prior estimation about the impact of a CNN on a given microcontroller, a design key point before applying neural network compression techniques. We introduce the EST primitive-based model to estimate the impact of a CNN on a microcontroller, regarding the latency, the power consumption and the needed memory space. The target hardware is the STM32L496ZG with CPU ARM Cortex M4 running at 14 different frequencies. Our model shows an average estimation error of 13.66% on latency, 5.52% on power consumption and 2.09% on needed memory space.
微控制器的CNN推理成本估计:基于EST原语的模型
嵌入式设备的神经网络推理将对我们的社会产生重要的工业影响。嵌入式设备在许多领域无处不在,如人类活动识别或视觉对象检测。事实上,卷积神经网络(cnn)是目前解决大多数计算机视觉问题的最佳方式。尽管如此,这些算法提供的准确性是有代价的:大量的能量消耗、高执行时间和显著的内存占用。这种成本是在计算能力、存储空间和可用能量有限的嵌入式设备中实现cnn的主要挑战。这使得预先估计CNN对给定微控制器的影响,这是应用神经网络压缩技术之前的设计关键点。我们引入了基于EST原语的模型来估计CNN对微控制器的影响,包括延迟、功耗和所需的内存空间。目标硬件是STM32L496ZG与CPU ARM Cortex M4运行在14个不同的频率。我们的模型显示,延迟的平均估计误差为13.66%,功耗的平均估计误差为5.52%,所需内存空间的平均估计误差为2.09%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信