A holomorphic functional calculus for finite families of commuting semigroups

J. Esterle
{"title":"A holomorphic functional calculus for finite\n families of commuting semigroups","authors":"J. Esterle","doi":"10.1090/conm/743/14956","DOIUrl":null,"url":null,"abstract":"Let A be a commutative Banach algebra such that uA = {0} for u $\\in$ A \\ {0} which possesses dense principal ideals. The purpose of the paper is to give a general framework to define F (--$\\lambda$1$\\Delta$T 1 ,. .. , --$\\lambda$ k $\\Delta$T k) where F belongs to a natural class of holomorphic functions defined on suitable open subsets of C k containing the \"Arveson spectrum\" of (--$\\lambda$1$\\Delta$T 1 ,. .. , --$\\lambda$ k $\\Delta$T k), where $\\Delta$T 1 ,. .. , $\\Delta$T k are the infinitesimal generators of commuting one-parameter semigroups of multipliers on A belonging to one of the following classes (1) The class of strongly continous semigroups T = (T (te ia)t>0 such that $\\cup$t>0T (te ia)A is dense in A, where a $\\in$ R. (2) The class of semigroups T = (T ($\\zeta$)) $\\zeta$$\\in$S a,b holomorphic on an open sector S a,b such that T ($\\zeta$)A is dense in A for some, or equivalently for all $\\zeta$ $\\in$ S a,b. We use the notion of quasimultiplier, introduced in 1981 by the author at the Long Beach Conference on Banach algebras: the generators of the semigroups under consideration will be defined as quasimultipliers on A, and for $\\zeta$ in the Arveson resolvent set $\\sigma$ar($\\Delta$T) the resolvent ($\\Delta$T -- $\\zeta$I) --1 will be defined as a regular quasimultiplier on A, i.e. a quasimultiplier S on A such that sup n$\\ge$1 $\\lambda$ n S n u 0 and some u generating a dense ideal of A and belonging to the intersection of the domains of S n , n $\\ge$ 1. The first step consists in \"normalizing\" the Banach algebra A, i.e. continuously embedding A in a Banach algebra B having the same quasi-multiplier algebra as A but for which lim sup t$\\rightarrow$0 + T (te ia) M(B) < +$\\infty$ if T belongs to the class (1), and for which lim sup $\\zeta$$\\rightarrow$0 $\\zeta$$\\in$S $\\alpha$,$\\beta$ T ($\\zeta$) < +$\\infty$ for all pairs ($\\alpha$, $\\beta$) such that a < $\\alpha$ < $\\beta$ < b if T belongs to the class (2). Iterating this procedure this allows to consider ($\\lambda$j$\\Delta$T j + $\\zeta$I) --1 as an element of M(B) for $\\zeta$ $\\in$ Resar(--$\\lambda$j$\\Delta$T j), the \"Arveson resolvent set \" of --$\\lambda$j$\\Delta$T j , and to use the standard integral 'resolvent formula' even if the given semigroups are not bounded near the origin. A first approach to the functional calculus involves the dual G a,b of an algebra of fast decreasing functions, described in Appendix 2. Let a = (a1,. .. , a k), b = (b1,. .. , b k), with aj $\\le$ bj $\\le$ aj + $\\pi$, and denote by M a,b the set of families ($\\alpha$, $\\beta$) = ($\\alpha$1, $\\beta$1),. .. , ($\\alpha$ k , $\\beta$ k) such that 1","PeriodicalId":213844,"journal":{"name":"Complex Analysis and Spectral Theory","volume":"276 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Analysis and Spectral Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/conm/743/14956","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let A be a commutative Banach algebra such that uA = {0} for u $\in$ A \ {0} which possesses dense principal ideals. The purpose of the paper is to give a general framework to define F (--$\lambda$1$\Delta$T 1 ,. .. , --$\lambda$ k $\Delta$T k) where F belongs to a natural class of holomorphic functions defined on suitable open subsets of C k containing the "Arveson spectrum" of (--$\lambda$1$\Delta$T 1 ,. .. , --$\lambda$ k $\Delta$T k), where $\Delta$T 1 ,. .. , $\Delta$T k are the infinitesimal generators of commuting one-parameter semigroups of multipliers on A belonging to one of the following classes (1) The class of strongly continous semigroups T = (T (te ia)t>0 such that $\cup$t>0T (te ia)A is dense in A, where a $\in$ R. (2) The class of semigroups T = (T ($\zeta$)) $\zeta$$\in$S a,b holomorphic on an open sector S a,b such that T ($\zeta$)A is dense in A for some, or equivalently for all $\zeta$ $\in$ S a,b. We use the notion of quasimultiplier, introduced in 1981 by the author at the Long Beach Conference on Banach algebras: the generators of the semigroups under consideration will be defined as quasimultipliers on A, and for $\zeta$ in the Arveson resolvent set $\sigma$ar($\Delta$T) the resolvent ($\Delta$T -- $\zeta$I) --1 will be defined as a regular quasimultiplier on A, i.e. a quasimultiplier S on A such that sup n$\ge$1 $\lambda$ n S n u 0 and some u generating a dense ideal of A and belonging to the intersection of the domains of S n , n $\ge$ 1. The first step consists in "normalizing" the Banach algebra A, i.e. continuously embedding A in a Banach algebra B having the same quasi-multiplier algebra as A but for which lim sup t$\rightarrow$0 + T (te ia) M(B) < +$\infty$ if T belongs to the class (1), and for which lim sup $\zeta$$\rightarrow$0 $\zeta$$\in$S $\alpha$,$\beta$ T ($\zeta$) < +$\infty$ for all pairs ($\alpha$, $\beta$) such that a < $\alpha$ < $\beta$ < b if T belongs to the class (2). Iterating this procedure this allows to consider ($\lambda$j$\Delta$T j + $\zeta$I) --1 as an element of M(B) for $\zeta$ $\in$ Resar(--$\lambda$j$\Delta$T j), the "Arveson resolvent set " of --$\lambda$j$\Delta$T j , and to use the standard integral 'resolvent formula' even if the given semigroups are not bounded near the origin. A first approach to the functional calculus involves the dual G a,b of an algebra of fast decreasing functions, described in Appendix 2. Let a = (a1,. .. , a k), b = (b1,. .. , b k), with aj $\le$ bj $\le$ aj + $\pi$, and denote by M a,b the set of families ($\alpha$, $\beta$) = ($\alpha$1, $\beta$1),. .. , ($\alpha$ k , $\beta$ k) such that 1
交换半群有限族的全纯泛函演算
设A是一个交换巴拿赫代数,使得uA = {0} 为你 $\in$ a {0} 它拥有丰富的主要理想。本文的目的是给出一个定义F(——)的一般框架$\lambda$1$\Delta$1、……, --$\lambda$ k $\Delta$T k),其中F属于定义在C k的合适开子集上的全纯函数的自然类,该类包含(——)的“Arveson谱”$\lambda$1$\Delta$1、……, --$\lambda$ k $\Delta$T (k),其中 $\Delta$1、……, $\Delta$T k是A上的乘子交换单参数半群的无限小发生器,这些半群属于下列类之一(1)强连续半群T = (T (ia) T >0,使得 $\cup$t>0T (ia)A在A中密度大,其中A $\in$ R.(2)半群的类T = (T)$\zeta$)) $\zeta$$\in$sa,b在开扇区sa,b上是全纯的,使得T ($\zeta$)A在A中对某些是稠密的,或者对所有都是等价的 $\zeta$ $\in$ S a b。我们使用了拟乘子的概念,这是作者在1981年的Banach代数长滩会议上提出的:所考虑的半群的生成将被定义为A上的拟乘子,对于 $\zeta$ 在Arveson解决方案集中 $\sigma$ar()$\Delta$T)解决方案($\Delta$—— $\zeta$I)—1将被定义为a上的正则拟乘子,即a上的拟乘子S使其大于n$\ge$1 $\lambda$ n nsu 0和某个u生成a的稠密理想并且属于nsn, n的定义域的交 $\ge$ 1. 第一步是“规范化”巴拿赫代数A,即连续地将A嵌入到一个巴拿赫代数B中,B与A具有相同的准乘子代数,但它是线性的$\rightarrow$0 + T (ia) M(B) < +$\infty$ 如果T属于类(1),并且对于该类(1 $\zeta$$\rightarrow$0 $\zeta$$\in$s $\alpha$,$\beta$ T ($\zeta$) < +$\infty$ 对于所有配对($\alpha$, $\beta$)使得a < $\alpha$ < $\beta$ < b,如果T属于类(2)。迭代这个过程允许考虑($\lambda$j$\Delta$tj + $\zeta$I) -1作为M(B)的一个元素 $\zeta$ $\in$ 研究人员(——$\lambda$j$\Delta$T j)表示——的“Arveson解析集”$\lambda$j$\Delta$tj,并且即使给定的半群在原点附近没有界,也可以使用标准的积分“解公式”。函数演算的第一种方法涉及到在附录2中描述的速降函数代数的对偶G A,b。令a = (a1,.…), a k), b = (b1,…, b k),与aj $\le$ bj $\le$ Aj + $\pi$,用M a,b表示($\alpha$, $\beta$) = ($\alpha$1, $\beta$1)……, ($\alpha$ K, $\beta$ K)使
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信